MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnf1o Structured version   Visualization version   GIF version

Theorem ixpsnf1o 7948
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
ixpsnf1o (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ixpsnf1o
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
2 snex 4908 . . . 4 {𝐼} ∈ V
3 snex 4908 . . . 4 {𝑥} ∈ V
42, 3xpex 6962 . . 3 ({𝐼} × {𝑥}) ∈ V
54a1i 11 . 2 ((𝐼𝑉𝑥𝐴) → ({𝐼} × {𝑥}) ∈ V)
6 vex 3203 . . . . 5 𝑎 ∈ V
76rnex 7100 . . . 4 ran 𝑎 ∈ V
87uniex 6953 . . 3 ran 𝑎 ∈ V
98a1i 11 . 2 ((𝐼𝑉𝑎X𝑦 ∈ {𝐼}𝐴) → ran 𝑎 ∈ V)
10 sneq 4187 . . . . . 6 (𝑏 = 𝐼 → {𝑏} = {𝐼})
1110xpeq1d 5138 . . . . 5 (𝑏 = 𝐼 → ({𝑏} × {𝑥}) = ({𝐼} × {𝑥}))
1211eqeq2d 2632 . . . 4 (𝑏 = 𝐼 → (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = ({𝐼} × {𝑥})))
1312anbi2d 740 . . 3 (𝑏 = 𝐼 → ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥𝐴𝑎 = ({𝐼} × {𝑥}))))
14 vex 3203 . . . . . 6 𝑏 ∈ V
15 elixpsn 7947 . . . . . 6 (𝑏 ∈ V → (𝑎X𝑦 ∈ {𝑏}𝐴 ↔ ∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩}))
1614, 15ax-mp 5 . . . . 5 (𝑎X𝑦 ∈ {𝑏}𝐴 ↔ ∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩})
1710ixpeq1d 7920 . . . . . 6 (𝑏 = 𝐼X𝑦 ∈ {𝑏}𝐴 = X𝑦 ∈ {𝐼}𝐴)
1817eleq2d 2687 . . . . 5 (𝑏 = 𝐼 → (𝑎X𝑦 ∈ {𝑏}𝐴𝑎X𝑦 ∈ {𝐼}𝐴))
1916, 18syl5bbr 274 . . . 4 (𝑏 = 𝐼 → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ↔ 𝑎X𝑦 ∈ {𝐼}𝐴))
2019anbi1d 741 . . 3 (𝑏 = 𝐼 → ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) ↔ (𝑎X𝑦 ∈ {𝐼}𝐴𝑥 = ran 𝑎)))
21 vex 3203 . . . . . . 7 𝑥 ∈ V
2214, 21xpsn 6407 . . . . . 6 ({𝑏} × {𝑥}) = {⟨𝑏, 𝑥⟩}
2322eqeq2i 2634 . . . . 5 (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = {⟨𝑏, 𝑥⟩})
2423anbi2i 730 . . . 4 ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))
25 eqid 2622 . . . . . . . . 9 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}
26 opeq2 4403 . . . . . . . . . . . 12 (𝑐 = 𝑥 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑥⟩)
2726sneqd 4189 . . . . . . . . . . 11 (𝑐 = 𝑥 → {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})
2827eqeq2d 2632 . . . . . . . . . 10 (𝑐 = 𝑥 → ({⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ↔ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}))
2928rspcev 3309 . . . . . . . . 9 ((𝑥𝐴 ∧ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}) → ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
3025, 29mpan2 707 . . . . . . . 8 (𝑥𝐴 → ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
3114, 21op2nda 5620 . . . . . . . . 9 ran {⟨𝑏, 𝑥⟩} = 𝑥
3231eqcomi 2631 . . . . . . . 8 𝑥 = ran {⟨𝑏, 𝑥⟩}
3330, 32jctir 561 . . . . . . 7 (𝑥𝐴 → (∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran {⟨𝑏, 𝑥⟩}))
34 eqeq1 2626 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑥⟩} → (𝑎 = {⟨𝑏, 𝑐⟩} ↔ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩}))
3534rexbidv 3052 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑥⟩} → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ↔ ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩}))
36 rneq 5351 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑥⟩} → ran 𝑎 = ran {⟨𝑏, 𝑥⟩})
3736unieqd 4446 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑥⟩} → ran 𝑎 = ran {⟨𝑏, 𝑥⟩})
3837eqeq2d 2632 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑥⟩} → (𝑥 = ran 𝑎𝑥 = ran {⟨𝑏, 𝑥⟩}))
3935, 38anbi12d 747 . . . . . . 7 (𝑎 = {⟨𝑏, 𝑥⟩} → ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) ↔ (∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran {⟨𝑏, 𝑥⟩})))
4033, 39syl5ibrcom 237 . . . . . 6 (𝑥𝐴 → (𝑎 = {⟨𝑏, 𝑥⟩} → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎)))
4140imp 445 . . . . 5 ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
42 vex 3203 . . . . . . . . . . 11 𝑐 ∈ V
4314, 42op2nda 5620 . . . . . . . . . 10 ran {⟨𝑏, 𝑐⟩} = 𝑐
4443eqeq2i 2634 . . . . . . . . 9 (𝑥 = ran {⟨𝑏, 𝑐⟩} ↔ 𝑥 = 𝑐)
45 eqidd 2623 . . . . . . . . . . 11 (𝑐𝐴 → {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩})
4645ancli 574 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩}))
47 eleq1 2689 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝑥𝐴𝑐𝐴))
48 opeq2 4403 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → ⟨𝑏, 𝑥⟩ = ⟨𝑏, 𝑐⟩)
4948sneqd 4189 . . . . . . . . . . . 12 (𝑥 = 𝑐 → {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
5049eqeq2d 2632 . . . . . . . . . . 11 (𝑥 = 𝑐 → ({⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩} ↔ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩}))
5147, 50anbi12d 747 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}) ↔ (𝑐𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩})))
5246, 51syl5ibrcom 237 . . . . . . . . 9 (𝑐𝐴 → (𝑥 = 𝑐 → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
5344, 52syl5bi 232 . . . . . . . 8 (𝑐𝐴 → (𝑥 = ran {⟨𝑏, 𝑐⟩} → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
54 rneq 5351 . . . . . . . . . . 11 (𝑎 = {⟨𝑏, 𝑐⟩} → ran 𝑎 = ran {⟨𝑏, 𝑐⟩})
5554unieqd 4446 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑐⟩} → ran 𝑎 = ran {⟨𝑏, 𝑐⟩})
5655eqeq2d 2632 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎𝑥 = ran {⟨𝑏, 𝑐⟩}))
57 eqeq1 2626 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑎 = {⟨𝑏, 𝑥⟩} ↔ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}))
5857anbi2d 740 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑐⟩} → ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) ↔ (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
5956, 58imbi12d 334 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑐⟩} → ((𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩})) ↔ (𝑥 = ran {⟨𝑏, 𝑐⟩} → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}))))
6053, 59syl5ibrcom 237 . . . . . . 7 (𝑐𝐴 → (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))))
6160rexlimiv 3027 . . . . . 6 (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩})))
6261imp 445 . . . . 5 ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))
6341, 62impbii 199 . . . 4 ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) ↔ (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
6424, 63bitri 264 . . 3 ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
6513, 20, 64vtoclbg 3267 . 2 (𝐼𝑉 → ((𝑥𝐴𝑎 = ({𝐼} × {𝑥})) ↔ (𝑎X𝑦 ∈ {𝐼}𝐴𝑥 = ran 𝑎)))
661, 5, 9, 65f1od 6885 1 (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  {csn 4177  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  ran crn 5115  1-1-ontowf1o 5887  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ixp 7909
This theorem is referenced by:  mapsnf1o  7949
  Copyright terms: Public domain W3C validator