MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixpsn Structured version   Visualization version   GIF version

Theorem elixpsn 7947
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
elixpsn (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦

Proof of Theorem elixpsn
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4187 . . . 4 (𝑧 = 𝐴 → {𝑧} = {𝐴})
21ixpeq1d 7920 . . 3 (𝑧 = 𝐴X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵)
32eleq2d 2687 . 2 (𝑧 = 𝐴 → (𝐹X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝐴}𝐵))
4 opeq1 4402 . . . . 5 (𝑧 = 𝐴 → ⟨𝑧, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
54sneqd 4189 . . . 4 (𝑧 = 𝐴 → {⟨𝑧, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
65eqeq2d 2632 . . 3 (𝑧 = 𝐴 → (𝐹 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, 𝑦⟩}))
76rexbidv 3052 . 2 (𝑧 = 𝐴 → (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
8 elex 3212 . . 3 (𝐹X𝑥 ∈ {𝑧}𝐵𝐹 ∈ V)
9 snex 4908 . . . . 5 {⟨𝑧, 𝑦⟩} ∈ V
10 eleq1 2689 . . . . 5 (𝐹 = {⟨𝑧, 𝑦⟩} → (𝐹 ∈ V ↔ {⟨𝑧, 𝑦⟩} ∈ V))
119, 10mpbiri 248 . . . 4 (𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
1211rexlimivw 3029 . . 3 (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
13 eleq1 2689 . . . 4 (𝑤 = 𝐹 → (𝑤X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝑧}𝐵))
14 eqeq1 2626 . . . . 5 (𝑤 = 𝐹 → (𝑤 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝑧, 𝑦⟩}))
1514rexbidv 3052 . . . 4 (𝑤 = 𝐹 → (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
16 vex 3203 . . . . . 6 𝑤 ∈ V
1716elixp 7915 . . . . 5 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵))
18 vex 3203 . . . . . . 7 𝑧 ∈ V
19 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑧 → (𝑤𝑥) = (𝑤𝑧))
2019eleq1d 2686 . . . . . . 7 (𝑥 = 𝑧 → ((𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
2118, 20ralsn 4222 . . . . . 6 (∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2221anbi2i 730 . . . . 5 ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
23 simpl 473 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧})
24 fveq2 6191 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑤𝑦) = (𝑤𝑧))
2524eleq1d 2686 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
2618, 25ralsn 4222 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2726biimpri 218 . . . . . . . . . 10 ((𝑤𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
2827adantl 482 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
29 ffnfv 6388 . . . . . . . . 9 (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵))
3023, 28, 29sylanbrc 698 . . . . . . . 8 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵)
3118fsn2 6403 . . . . . . . 8 (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
3230, 31sylib 208 . . . . . . 7 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
33 opeq2 4403 . . . . . . . . . 10 (𝑦 = (𝑤𝑧) → ⟨𝑧, 𝑦⟩ = ⟨𝑧, (𝑤𝑧)⟩)
3433sneqd 4189 . . . . . . . . 9 (𝑦 = (𝑤𝑧) → {⟨𝑧, 𝑦⟩} = {⟨𝑧, (𝑤𝑧)⟩})
3534eqeq2d 2632 . . . . . . . 8 (𝑦 = (𝑤𝑧) → (𝑤 = {⟨𝑧, 𝑦⟩} ↔ 𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
3635rspcev 3309 . . . . . . 7 (((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
3732, 36syl 17 . . . . . 6 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
38 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
3918, 38fvsn 6446 . . . . . . . . . 10 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
40 id 22 . . . . . . . . . 10 (𝑦𝐵𝑦𝐵)
4139, 40syl5eqel 2705 . . . . . . . . 9 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)
4218, 38fnsn 5946 . . . . . . . . 9 {⟨𝑧, 𝑦⟩} Fn {𝑧}
4341, 42jctil 560 . . . . . . . 8 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
44 fneq1 5979 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ↔ {⟨𝑧, 𝑦⟩} Fn {𝑧}))
45 fveq1 6190 . . . . . . . . . 10 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
4645eleq1d 2686 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤𝑧) ∈ 𝐵 ↔ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
4744, 46anbi12d 747 . . . . . . . 8 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)))
4843, 47syl5ibrcom 237 . . . . . . 7 (𝑦𝐵 → (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵)))
4948rexlimiv 3027 . . . . . 6 (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
5037, 49impbii 199 . . . . 5 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5117, 22, 503bitri 286 . . . 4 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5213, 15, 51vtoclbg 3267 . . 3 (𝐹 ∈ V → (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
538, 12, 52pm5.21nii 368 . 2 (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩})
543, 7, 53vtoclbg 3267 1 (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  {csn 4177  cop 4183   Fn wfn 5883  wf 5884  cfv 5888  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ixp 7909
This theorem is referenced by:  ixpsnf1o  7948  hoidmv1le  40808
  Copyright terms: Public domain W3C validator