![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgenss | Structured version Visualization version GIF version |
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenss | ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4467 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽)) |
3 | elrestr 16089 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) | |
4 | 3 | 3expa 1265 | . . . . . . . 8 ⊢ (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
5 | 4 | an32s 846 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
6 | 5 | a1d 25 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
7 | 6 | ralrimiva 2966 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
8 | 7 | ex 450 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
9 | 2, 8 | jcad 555 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
10 | eqid 2622 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
11 | 10 | toptopon 20722 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | elkgen 21339 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | |
13 | 11, 12 | sylbi 207 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
14 | 9, 13 | sylibrd 249 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ∈ (𝑘Gen‘𝐽))) |
15 | 14 | ssrdv 3609 | 1 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 ‘cfv 5888 (class class class)co 6650 ↾t crest 16081 Topctop 20698 TopOnctopon 20715 Compccmp 21189 𝑘Genckgen 21336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-rest 16083 df-top 20699 df-topon 20716 df-kgen 21337 |
This theorem is referenced by: kgenhaus 21347 kgencmp 21348 kgencmp2 21349 kgenidm 21350 iskgen2 21351 kgencn3 21361 kgen2cn 21362 |
Copyright terms: Public domain | W3C validator |