| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem8 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| Ref | Expression |
|---|---|
| kmlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 2992 |
. . . . 5
| |
| 2 | df-rex 2918 |
. . . . . . . 8
| |
| 3 | rexnal 2995 |
. . . . . . . 8
| |
| 4 | 2, 3 | bitr3i 266 |
. . . . . . 7
|
| 5 | exsimpl 1795 |
. . . . . . . 8
| |
| 6 | n0 3931 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 224 |
. . . . . . 7
|
| 8 | 4, 7 | sylbir 225 |
. . . . . 6
|
| 9 | 8 | ralimi 2952 |
. . . . 5
|
| 10 | 1, 9 | sylbir 225 |
. . . 4
|
| 11 | biimt 350 |
. . . . . . . . 9
| |
| 12 | 11 | ralimi 2952 |
. . . . . . . 8
|
| 13 | ralbi 3068 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | 14 | anbi2d 740 |
. . . . . 6
|
| 16 | 15 | exbidv 1850 |
. . . . 5
|
| 17 | kmlem2 8973 |
. . . . 5
| |
| 18 | 16, 17 | syl6rbbr 279 |
. . . 4
|
| 19 | 10, 18 | syl 17 |
. . 3
|
| 20 | 19 | pm5.74i 260 |
. 2
|
| 21 | pm4.64 387 |
. 2
| |
| 22 | 20, 21 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 |
| This theorem is referenced by: dfackm 8988 |
| Copyright terms: Public domain | W3C validator |