| Step | Hyp | Ref
| Expression |
| 1 | | kqval.2 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 2 | 1 | kqffn 21528 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 3 | | elpreima 6337 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
| 4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
| 5 | 4 | adantr 481 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
| 6 | | noel 3919 |
. . . . . . . 8
⊢ ¬
(𝐹‘𝑧) ∈ ∅ |
| 7 | | elin 3796 |
. . . . . . . . 9
⊢ ((𝐹‘𝑧) ∈ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) ∧ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 8 | | incom 3805 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) = ((𝐹 “ (𝑋 ∖ 𝑈)) ∩ (𝐹 “ 𝑈)) |
| 9 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 10 | 9 | cldss 20833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ (Clsd‘𝐽) → 𝑈 ⊆ ∪ 𝐽) |
| 11 | 10 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ ∪ 𝐽) |
| 12 | | fndm 5990 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
| 13 | 2, 12 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋) |
| 14 | | toponuni 20719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 15 | 13, 14 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = ∪ 𝐽) |
| 16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = ∪ 𝐽) |
| 17 | 11, 16 | sseqtr4d 3642 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ dom 𝐹) |
| 18 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝑋) |
| 19 | 17, 18 | sseqtrd 3641 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ 𝑋) |
| 20 | 19 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → 𝑈 ⊆ 𝑋) |
| 21 | | dfss4 3858 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑈)) = 𝑈) |
| 22 | 20, 21 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (𝑋 ∖ (𝑋 ∖ 𝑈)) = 𝑈) |
| 23 | 22 | imaeq2d 5466 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (𝐹 “ (𝑋 ∖ (𝑋 ∖ 𝑈))) = (𝐹 “ 𝑈)) |
| 24 | 23 | ineq2d 3814 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹 “ (𝑋 ∖ 𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋 ∖ 𝑈)))) = ((𝐹 “ (𝑋 ∖ 𝑈)) ∩ (𝐹 “ 𝑈))) |
| 25 | | simpll 790 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 26 | 14 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑋 = ∪ 𝐽) |
| 27 | 26 | difeq1d 3727 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑈) = (∪ 𝐽 ∖ 𝑈)) |
| 28 | 9 | cldopn 20835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ 𝑈) ∈ 𝐽) |
| 29 | 28 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ 𝑈) ∈ 𝐽) |
| 30 | 27, 29 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑈) ∈ 𝐽) |
| 31 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (𝑋 ∖ 𝑈) ∈ 𝐽) |
| 32 | 1 | kqdisj 21535 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋 ∖ 𝑈) ∈ 𝐽) → ((𝐹 “ (𝑋 ∖ 𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋 ∖ 𝑈)))) = ∅) |
| 33 | 25, 31, 32 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹 “ (𝑋 ∖ 𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋 ∖ 𝑈)))) = ∅) |
| 34 | 24, 33 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹 “ (𝑋 ∖ 𝑈)) ∩ (𝐹 “ 𝑈)) = ∅) |
| 35 | 8, 34 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) = ∅) |
| 36 | 35 | eleq2d 2687 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) ↔ (𝐹‘𝑧) ∈ ∅)) |
| 37 | 7, 36 | syl5bbr 274 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) ∧ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈))) ↔ (𝐹‘𝑧) ∈ ∅)) |
| 38 | 6, 37 | mtbiri 317 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ¬ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) ∧ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 39 | | imnan 438 |
. . . . . . 7
⊢ (((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) → ¬ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈))) ↔ ¬ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) ∧ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 40 | 38, 39 | sylibr 224 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) → ¬ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 41 | | eldif 3584 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 ∖ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ ¬ 𝑧 ∈ 𝑈)) |
| 42 | 41 | baibr 945 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑋 → (¬ 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ (𝑋 ∖ 𝑈))) |
| 43 | 42 | adantl 482 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (¬ 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ (𝑋 ∖ 𝑈))) |
| 44 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
| 45 | 1 | kqfvima 21533 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋 ∖ 𝑈) ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ (𝑋 ∖ 𝑈) ↔ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 46 | 25, 31, 44, 45 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ (𝑋 ∖ 𝑈) ↔ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 47 | 43, 46 | bitrd 268 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (¬ 𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 48 | 47 | con1bid 345 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → (¬ (𝐹‘𝑧) ∈ (𝐹 “ (𝑋 ∖ 𝑈)) ↔ 𝑧 ∈ 𝑈)) |
| 49 | 40, 48 | sylibd 229 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) → 𝑧 ∈ 𝑈)) |
| 50 | 49 | expimpd 629 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
| 51 | 5, 50 | sylbid 230 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
| 52 | 51 | ssrdv 3609 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) ⊆ 𝑈) |
| 53 | | sseqin2 3817 |
. . . 4
⊢ (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑈) = 𝑈) |
| 54 | 17, 53 | sylib 208 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (dom 𝐹 ∩ 𝑈) = 𝑈) |
| 55 | | dminss 5547 |
. . 3
⊢ (dom
𝐹 ∩ 𝑈) ⊆ (◡𝐹 “ (𝐹 “ 𝑈)) |
| 56 | 54, 55 | syl6eqssr 3656 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ (◡𝐹 “ (𝐹 “ 𝑈))) |
| 57 | 52, 56 | eqssd 3620 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |