| Step | Hyp | Ref
| Expression |
| 1 | | qtoprest.2 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | qtoprest.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| 3 | | fofn 6117 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 5 | | qtopid 21508 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| 6 | 1, 4, 5 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| 7 | | qtoprest.5 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (◡𝐹 “ 𝑈)) |
| 8 | | cnvimass 5485 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑈) ⊆ dom 𝐹 |
| 9 | | fndm 5990 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
| 10 | 4, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 11 | 8, 10 | syl5sseq 3653 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑈) ⊆ 𝑋) |
| 12 | 7, 11 | eqsstrd 3639 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| 13 | | toponuni 20719 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 14 | 1, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 15 | 12, 14 | sseqtrd 3641 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
| 16 | | eqid 2622 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 17 | 16 | cnrest 21089 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐴 ⊆ ∪ 𝐽) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹))) |
| 18 | 6, 15, 17 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹))) |
| 19 | | qtoptopon 21507 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 20 | 1, 2, 19 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 21 | | df-ima 5127 |
. . . . . . 7
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
| 22 | 7 | imaeq2d 5466 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐹 “ (◡𝐹 “ 𝑈))) |
| 23 | | qtoprest.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ 𝑌) |
| 24 | | foimacnv 6154 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑈 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑈)) = 𝑈) |
| 25 | 2, 23, 24 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝑈)) = 𝑈) |
| 26 | 22, 25 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → (𝐹 “ 𝐴) = 𝑈) |
| 27 | 21, 26 | syl5eqr 2670 |
. . . . . 6
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) = 𝑈) |
| 28 | | eqimss 3657 |
. . . . . 6
⊢ (ran
(𝐹 ↾ 𝐴) = 𝑈 → ran (𝐹 ↾ 𝐴) ⊆ 𝑈) |
| 29 | 27, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ 𝑈) |
| 30 | | cnrest2 21090 |
. . . . 5
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ ran (𝐹 ↾ 𝐴) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑌) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))) |
| 31 | 20, 29, 23, 30 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))) |
| 32 | 18, 31 | mpbid 222 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 33 | | resttopon 20965 |
. . . 4
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝑈 ⊆ 𝑌) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
| 34 | 20, 23, 33 | syl2anc 693 |
. . 3
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
| 35 | | qtopss 21518 |
. . 3
⊢ (((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)) ∧ ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ ran (𝐹 ↾ 𝐴) = 𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |
| 36 | 32, 34, 27, 35 | syl3anc 1326 |
. 2
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |
| 37 | | resttopon 20965 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 38 | 1, 12, 37 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 39 | | fnfun 5988 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
| 40 | 4, 39 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐹) |
| 41 | 12, 10 | sseqtr4d 3642 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 42 | | fores 6124 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| 43 | 40, 41, 42 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| 44 | | foeq3 6113 |
. . . . . . 7
⊢ ((𝐹 “ 𝐴) = 𝑈 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→𝑈)) |
| 45 | 26, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→𝑈)) |
| 46 | 43, 45 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→𝑈) |
| 47 | | elqtop3 21506 |
. . . . 5
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝑈) → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ↔ (𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)))) |
| 48 | 38, 46, 47 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ↔ (𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)))) |
| 49 | | cnvresima 5623 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ 𝐴) “ 𝑥) = ((◡𝐹 “ 𝑥) ∩ 𝐴) |
| 50 | | imass2 5501 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑈 → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑈)) |
| 51 | 50 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑈)) |
| 52 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → 𝐴 = (◡𝐹 “ 𝑈)) |
| 53 | 51, 52 | sseqtr4d 3642 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡𝐹 “ 𝑥) ⊆ 𝐴) |
| 54 | | df-ss 3588 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑥) ⊆ 𝐴 ↔ ((◡𝐹 “ 𝑥) ∩ 𝐴) = (◡𝐹 “ 𝑥)) |
| 55 | 53, 54 | sylib 208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡𝐹 “ 𝑥) ∩ 𝐴) = (◡𝐹 “ 𝑥)) |
| 56 | 49, 55 | syl5eq 2668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡(𝐹 ↾ 𝐴) “ 𝑥) = (◡𝐹 “ 𝑥)) |
| 57 | 56 | eleq1d 2686 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) |
| 58 | | simplrl 800 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ⊆ 𝑈) |
| 59 | | df-ss 3588 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑈 ↔ (𝑥 ∩ 𝑈) = 𝑥) |
| 60 | 58, 59 | sylib 208 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∩ 𝑈) = 𝑥) |
| 61 | | topontop 20718 |
. . . . . . . . . . . 12
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
| 62 | 20, 61 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
| 63 | 62 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
| 64 | | toponmax 20730 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
| 65 | 1, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 66 | | fornex 7135 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐽 → (𝐹:𝑋–onto→𝑌 → 𝑌 ∈ V)) |
| 67 | 65, 2, 66 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ V) |
| 68 | 67, 23 | ssexd 4805 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ V) |
| 69 | 68 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑈 ∈ V) |
| 70 | 23 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑈 ⊆ 𝑌) |
| 71 | 58, 70 | sstrd 3613 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ⊆ 𝑌) |
| 72 | | topontop 20718 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 73 | 1, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ Top) |
| 74 | | restopn2 20981 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ ((◡𝐹 “ 𝑥) ∈ 𝐽 ∧ (◡𝐹 “ 𝑥) ⊆ 𝐴))) |
| 75 | 73, 74 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ ((◡𝐹 “ 𝑥) ∈ 𝐽 ∧ (◡𝐹 “ 𝑥) ⊆ 𝐴))) |
| 76 | 75 | simprbda 653 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐽) ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 77 | 76 | adantrl 752 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐽) ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 78 | 77 | an32s 846 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 79 | | elqtop3 21506 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 80 | 1, 2, 79 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 81 | 80 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 82 | 71, 78, 81 | mpbir2and 957 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ∈ (𝐽 qTop 𝐹)) |
| 83 | | elrestr 16089 |
. . . . . . . . . 10
⊢ (((𝐽 qTop 𝐹) ∈ Top ∧ 𝑈 ∈ V ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (𝑥 ∩ 𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 84 | 63, 69, 82, 83 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∩ 𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 85 | 60, 84 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 86 | 34 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
| 87 | | toponuni 20719 |
. . . . . . . . . . . 12
⊢ (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → 𝑈 = ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 = ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 89 | 88 | difeq1d 3727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) = (∪ ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥)) |
| 90 | 23 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ 𝑌) |
| 91 | 20 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 92 | | toponuni 20719 |
. . . . . . . . . . . . 13
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 94 | 90, 93 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ ∪ (𝐽 qTop 𝐹)) |
| 95 | 90 | ssdifssd 3748 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ⊆ 𝑌) |
| 96 | 40 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → Fun 𝐹) |
| 97 | | funcnvcnv 5956 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
| 98 | | imadif 5973 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑈 ∖ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
| 99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
| 100 | 7 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (◡𝐹 “ 𝑈)) |
| 101 | 100 | difeq1d 3727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
| 102 | 99, 101 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) = (𝐴 ∖ (◡𝐹 “ 𝑥))) |
| 103 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽)) |
| 104 | 38 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 105 | | toponuni 20719 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 107 | 106 | difeq1d 3727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) = (∪ (𝐽 ↾t 𝐴) ∖ (◡𝐹 “ 𝑥))) |
| 108 | | topontop 20718 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → (𝐽 ↾t 𝐴) ∈ Top) |
| 109 | 104, 108 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ Top) |
| 110 | | simplrr 801 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) |
| 111 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
| 112 | 111 | opncld 20837 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → (∪
(𝐽 ↾t
𝐴) ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| 113 | 109, 110,
112 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∪
(𝐽 ↾t
𝐴) ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| 114 | 107, 113 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| 115 | | restcldr 20978 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
| 116 | 103, 114,
115 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
| 117 | 102, 116 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)) |
| 118 | | qtopcld 21516 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
| 119 | 1, 2, 118 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
| 120 | 119 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
| 121 | 95, 117, 120 | mpbir2and 957 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹))) |
| 122 | | difssd 3738 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ⊆ 𝑈) |
| 123 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ (𝐽
qTop 𝐹) = ∪ (𝐽
qTop 𝐹) |
| 124 | 123 | restcldi 20977 |
. . . . . . . . . . 11
⊢ ((𝑈 ⊆ ∪ (𝐽
qTop 𝐹) ∧ (𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ∧ (𝑈 ∖ 𝑥) ⊆ 𝑈) → (𝑈 ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 125 | 94, 121, 122, 124 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 126 | 89, 125 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 127 | | topontop 20718 |
. . . . . . . . . . 11
⊢ (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top) |
| 128 | 86, 127 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top) |
| 129 | | simplrl 800 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ 𝑈) |
| 130 | 129, 88 | sseqtrd 3641 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 131 | | eqid 2622 |
. . . . . . . . . . 11
⊢ ∪ ((𝐽
qTop 𝐹) ↾t
𝑈) = ∪ ((𝐽
qTop 𝐹) ↾t
𝑈) |
| 132 | 131 | isopn2 20836 |
. . . . . . . . . 10
⊢ ((((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top ∧ 𝑥 ⊆ ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))) |
| 133 | 128, 130,
132 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))) |
| 134 | 126, 133 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 135 | | qtoprest.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) |
| 136 | 135 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) |
| 137 | 85, 134, 136 | mpjaodan 827 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 138 | 137 | expr 643 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 139 | 57, 138 | sylbid 230 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 140 | 139 | expimpd 629 |
. . . 4
⊢ (𝜑 → ((𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 141 | 48, 140 | sylbid 230 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
| 142 | 141 | ssrdv 3609 |
. 2
⊢ (𝜑 → ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ⊆ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
| 143 | 36, 142 | eqssd 3620 |
1
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |