![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpreima | Structured version Visualization version GIF version |
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
elpreima | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 5485 | . . . . 5 ⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 | |
2 | 1 | sseli 3599 | . . . 4 ⊢ (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ dom 𝐹) |
3 | fndm 5990 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq2d 2687 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
5 | 2, 4 | syl5ib 234 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ 𝐴)) |
6 | fnfun 5988 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
7 | fvimacnvi 6331 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) | |
8 | 6, 7 | sylan 488 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) |
9 | 8 | ex 450 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐹‘𝐵) ∈ 𝐶)) |
10 | 5, 9 | jcad 555 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
11 | fvimacnv 6332 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) | |
12 | 11 | funfni 5991 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) |
13 | 12 | biimpd 219 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
14 | 13 | expimpd 629 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶) → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
15 | 10, 14 | impbid 202 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ◡ccnv 5113 dom cdm 5114 “ cima 5117 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: fniniseg 6338 fncnvima2 6339 unpreima 6341 respreima 6344 fnse 7294 brwitnlem 7587 unxpwdom2 8493 smobeth 9408 fpwwe2lem6 9457 fpwwe2lem9 9460 hashkf 13119 isercolllem2 14396 isercolllem3 14397 isercoll 14398 fsumss 14456 fprodss 14678 tanval 14858 1arith 15631 0ram 15724 ghmpreima 17682 ghmnsgpreima 17685 torsubg 18257 kerf1hrm 18743 lmhmpreima 19048 evlslem3 19514 mpfind 19536 znunithash 19913 cncnpi 21082 cncnp 21084 cnpdis 21097 cnt0 21150 cnhaus 21158 2ndcomap 21261 1stccnp 21265 ptpjpre1 21374 tx1cn 21412 tx2cn 21413 txcnmpt 21427 txdis1cn 21438 hauseqlcld 21449 xkoptsub 21457 xkococn 21463 kqsat 21534 kqcldsat 21536 kqreglem1 21544 kqreglem2 21545 reghmph 21596 ordthmeolem 21604 tmdcn2 21893 clssubg 21912 tgphaus 21920 qustgplem 21924 ucncn 22089 xmeterval 22237 imasf1obl 22293 blval2 22367 metuel2 22370 isnghm 22527 cnbl0 22577 cnblcld 22578 cnheiborlem 22753 nmhmcn 22920 ismbl 23294 mbfeqalem 23409 mbfmulc2lem 23414 mbfmax 23416 mbfposr 23419 mbfimaopnlem 23422 mbfaddlem 23427 mbfsup 23431 i1f1lem 23456 i1fpos 23473 mbfi1fseqlem4 23485 itg2monolem1 23517 itg2gt0 23527 itg2cnlem1 23528 itg2cnlem2 23529 plyeq0lem 23966 dgrlem 23985 dgrub 23990 dgrlb 23992 pserulm 24176 psercnlem2 24178 psercnlem1 24179 psercn 24180 abelth 24195 eff1olem 24294 ellogrn 24306 dvloglem 24394 logf1o2 24396 efopnlem1 24402 efopnlem2 24403 logtayl 24406 cxpcn3lem 24488 cxpcn3 24489 resqrtcn 24490 asinneg 24613 areambl 24685 sqff1o 24908 ubthlem1 27726 unipreima 29446 1stpreima 29484 2ndpreima 29485 suppss3 29502 kerunit 29823 smatrcl 29862 cnre2csqlem 29956 elzrhunit 30023 qqhval2lem 30025 qqhf 30030 1stmbfm 30322 2ndmbfm 30323 mbfmcnt 30330 eulerpartlemsv2 30420 eulerpartlemv 30426 eulerpartlemf 30432 eulerpartlemgvv 30438 eulerpartlemgh 30440 eulerpartlemgs2 30442 sseqmw 30453 sseqf 30454 sseqp1 30457 fiblem 30460 fibp1 30463 cvmseu 31258 cvmliftmolem1 31263 cvmliftmolem2 31264 cvmliftlem15 31280 cvmlift2lem10 31294 cvmlift3lem8 31308 elmthm 31473 mthmblem 31477 mclsppslem 31480 mclspps 31481 cnambfre 33458 dvtan 33460 ftc1anclem3 33487 ftc1anclem5 33489 areacirc 33505 sstotbnd2 33573 keridl 33831 ellkr 34376 pw2f1ocnv 37604 binomcxplemdvbinom 38552 binomcxplemcvg 38553 binomcxplemnotnn0 38555 rfcnpre1 39178 rfcnpre2 39190 rfcnpre3 39192 rfcnpre4 39193 elpreimad 39454 limsupresxr 39998 liminfresxr 39999 icccncfext 40100 sge0fodjrnlem 40633 smfsuplem1 41017 |
Copyright terms: Public domain | W3C validator |