![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version |
Description: Deduce equality from lattice ordering. (eqssd 3620 analog.) (Contributed by NM, 18-Nov-2011.) |
Ref | Expression |
---|---|
latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
latasymd.l | ⊢ ≤ = (le‘𝐾) |
latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
Ref | Expression |
---|---|
latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | 6, 7 | latasymb 17054 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
9 | 3, 4, 5, 8 | syl3anc 1326 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
10 | 1, 2, 9 | mpbi2and 956 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 Basecbs 15857 lecple 15948 Latclat 17045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 df-iota 5851 df-fv 5896 df-preset 16928 df-poset 16946 df-lat 17046 |
This theorem is referenced by: latjidm 17074 latmidm 17086 latjass 17095 oldmm1 34504 olj01 34512 olm01 34523 cvlcvr1 34626 llnmlplnN 34825 2llnjaN 34852 2lplnja 34905 cdlema1N 35077 hlmod1i 35142 lautj 35379 lautm 35380 cdleme19a 35591 cdleme28b 35659 trljco 36028 dochvalr 36646 |
Copyright terms: Public domain | W3C validator |