Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautm Structured version   Visualization version   GIF version

Theorem lautm 35380
Description: Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautm.b 𝐵 = (Base‘𝐾)
lautm.m = (meet‘𝐾)
lautm.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautm ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautm
StepHypRef Expression
1 lautm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2622 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 473 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 simpr1 1067 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
53, 4jca 554 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐾 ∈ Lat ∧ 𝐹𝐼))
6 lautm.m . . . . 5 = (meet‘𝐾)
71, 6latmcl 17052 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
873adant3r1 1274 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 lautm.i . . . 4 𝐼 = (LAut‘𝐾)
101, 9lautcl 35373 . . 3 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
115, 8, 10syl2anc 693 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
12 simpr2 1068 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
131, 9lautcl 35373 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
145, 12, 13syl2anc 693 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
15 simpr3 1069 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
161, 9lautcl 35373 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
175, 15, 16syl2anc 693 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
181, 6latmcl 17052 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
193, 14, 17, 18syl3anc 1326 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
201, 2, 6latmle1 17076 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
21203adant3r1 1274 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)𝑋)
221, 2, 9lautle 35370 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝑋 𝑌) ∈ 𝐵𝑋𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋)))
235, 8, 12, 22syl12anc 1324 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋)))
2421, 23mpbid 222 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋))
251, 2, 6latmle2 17077 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
26253adant3r1 1274 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)𝑌)
271, 2, 9lautle 35370 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)))
285, 8, 15, 27syl12anc 1324 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)))
2926, 28mpbid 222 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌))
301, 2, 6latlem12 17078 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹‘(𝑋 𝑌)) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵)) → (((𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋) ∧ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)) ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌))))
313, 11, 14, 17, 30syl13anc 1328 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋) ∧ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)) ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌))))
3224, 29, 31mpbi2and 956 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
331, 9laut1o 35371 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
34333ad2antr1 1226 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
35 f1ocnvfv2 6533 . . . 4 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
3634, 19, 35syl2anc 693 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
371, 2, 6latmle1 17076 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋))
383, 14, 17, 37syl3anc 1326 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋))
391, 2, 9lautcnvle 35375 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑋))))
405, 19, 14, 39syl12anc 1324 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑋))))
4138, 40mpbid 222 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑋)))
42 f1ocnvfv1 6532 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐹𝑋)) = 𝑋)
4334, 12, 42syl2anc 693 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑋)) = 𝑋)
4441, 43breqtrd 4679 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑋)
451, 2, 6latmle2 17077 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌))
463, 14, 17, 45syl3anc 1326 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌))
471, 2, 9lautcnvle 35375 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑌))))
485, 19, 17, 47syl12anc 1324 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑌))))
4946, 48mpbid 222 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑌)))
50 f1ocnvfv1 6532 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐵𝑌𝐵) → (𝐹‘(𝐹𝑌)) = 𝑌)
5134, 15, 50syl2anc 693 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑌)) = 𝑌)
5249, 51breqtrd 4679 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑌)
53 f1ocnvdm 6540 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
5434, 19, 53syl2anc 693 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
551, 2, 6latlem12 17078 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑋 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌)))
563, 54, 12, 15, 55syl13anc 1328 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑋 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌)))
5744, 52, 56mpbi2and 956 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌))
581, 2, 9lautle 35370 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
595, 54, 8, 58syl12anc 1324 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
6057, 59mpbid 222 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
6136, 60eqbrtrrd 4677 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
621, 2, 3, 11, 19, 32, 61latasymd 17057 1 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  ccnv 5113  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  meetcmee 16945  Latclat 17045  LAutclaut 35271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-laut 35275
This theorem is referenced by:  ltrnm  35417
  Copyright terms: Public domain W3C validator