Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnja Structured version   Visualization version   GIF version

Theorem 2lplnja 34905
Description: The join of two different lattice planes in a lattice volume equals the volume (version of 2lplnj 34906 in terms of atoms). (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnja.l = (le‘𝐾)
2lplnja.j = (join‘𝐾)
2lplnja.a 𝐴 = (Atoms‘𝐾)
2lplnja.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnja ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) = 𝑊)

Proof of Theorem 2lplnja
StepHypRef Expression
1 eqid 2622 . 2 (Base‘𝐾) = (Base‘𝐾)
2 2lplnja.l . 2 = (le‘𝐾)
3 simp11l 1172 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝐾 ∈ HL)
4 hllat 34650 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝐾 ∈ Lat)
6 simp121 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑃𝐴)
7 simp122 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑄𝐴)
8 2lplnja.j . . . . . 6 = (join‘𝐾)
9 2lplnja.a . . . . . 6 𝐴 = (Atoms‘𝐾)
101, 8, 9hlatjcl 34653 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
113, 6, 7, 10syl3anc 1326 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑃 𝑄) ∈ (Base‘𝐾))
12 simp123 1195 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑅𝐴)
131, 9atbase 34576 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑅 ∈ (Base‘𝐾))
151, 8latjcl 17051 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
165, 11, 14, 15syl3anc 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
17 simp2l1 1160 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆𝐴)
18 simp2l2 1161 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇𝐴)
191, 8, 9hlatjcl 34653 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
203, 17, 18, 19syl3anc 1326 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 𝑇) ∈ (Base‘𝐾))
21 simp2l3 1162 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈𝐴)
221, 9atbase 34576 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2321, 22syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 ∈ (Base‘𝐾))
241, 8latjcl 17051 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
255, 20, 23, 24syl3anc 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
261, 8latjcl 17051 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) ∈ (Base‘𝐾))
275, 16, 25, 26syl3anc 1326 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) ∈ (Base‘𝐾))
28 simp11r 1173 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊𝑉)
29 2lplnja.v . . . 4 𝑉 = (LVols‘𝐾)
301, 29lvolbase 34864 . . 3 (𝑊𝑉𝑊 ∈ (Base‘𝐾))
3128, 30syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊 ∈ (Base‘𝐾))
32 simp31 1097 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) 𝑊)
33 simp32 1098 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) 𝑊)
341, 2, 8latjle12 17062 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊))
355, 16, 25, 31, 34syl13anc 1328 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊))
3632, 33, 35mpbi2and 956 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊)
371, 2, 8latlej2 17061 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
385, 20, 23, 37syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 ((𝑆 𝑇) 𝑈))
391, 2, 5, 23, 25, 31, 38, 33lattrd 17058 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 𝑊)
401, 2, 8latjle12 17062 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑈 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑈) 𝑊))
415, 16, 23, 31, 40syl13anc 1328 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑈 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑈) 𝑊))
4232, 39, 41mpbi2and 956 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑈) 𝑊)
4342ad2antrr 762 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) 𝑊)
443ad2antrr 762 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
453, 6, 73jca 1242 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
4645ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
4712, 21jca 554 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑈𝐴))
4847ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑈𝐴))
49 simp13l 1176 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑃𝑄)
5049ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
51 simp13r 1177 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ¬ 𝑅 (𝑃 𝑄))
5251ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
53 simp33 1099 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))
5453ad2antrr 762 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))
55 simplr 792 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑆 ((𝑃 𝑄) 𝑅))
56 simpr 477 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑇 ((𝑃 𝑄) 𝑅))
571, 9atbase 34576 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
5817, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 ∈ (Base‘𝐾))
591, 9atbase 34576 . . . . . . . . . . . . . . . . . . 19 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
6018, 59syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ∈ (Base‘𝐾))
611, 2, 8latjle12 17062 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
625, 58, 60, 16, 61syl13anc 1328 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
6362ad2antrr 762 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
6455, 56, 63mpbi2and 956 . . . . . . . . . . . . . . 15 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑆 𝑇) ((𝑃 𝑄) 𝑅))
6564adantr 481 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (𝑆 𝑇) ((𝑃 𝑄) 𝑅))
66 simpr 477 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → 𝑈 ((𝑃 𝑄) 𝑅))
671, 2, 8latjle12 17062 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
685, 20, 23, 16, 67syl13anc 1328 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
6968ad3antrrr 766 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
7065, 66, 69mpbi2and 956 . . . . . . . . . . . . 13 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅))
71 simp2l 1087 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆𝐴𝑇𝐴𝑈𝐴))
72 simp12 1092 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
73 simp2rr 1131 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ¬ 𝑈 (𝑆 𝑇))
74 simp2rl 1130 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆𝑇)
752, 8, 93at 34776 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (¬ 𝑈 (𝑆 𝑇) ∧ 𝑆𝑇)) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
763, 71, 72, 73, 74, 75syl32anc 1334 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
7776ad3antrrr 766 . . . . . . . . . . . . 13 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
7870, 77mpbid 222 . . . . . . . . . . . 12 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅))
7978eqcomd 2628 . . . . . . . . . . 11 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
8079ex 450 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑈 ((𝑃 𝑄) 𝑅) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
8180necon3ad 2807 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈) → ¬ 𝑈 ((𝑃 𝑄) 𝑅)))
8254, 81mpd 15 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑈 ((𝑃 𝑄) 𝑅))
832, 8, 9, 29lvoli2 34867 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑈𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑈 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉)
8446, 48, 50, 52, 82, 83syl113anc 1338 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉)
8528ad2antrr 762 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
862, 29lvolcmp 34903 . . . . . . 7 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑈) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊))
8744, 84, 85, 86syl3anc 1326 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑈) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊))
8843, 87mpbid 222 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊)
891, 2, 8latjlej2 17066 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑈 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
905, 23, 25, 16, 89syl13anc 1328 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑈 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
9138, 90mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
9291ad2antrr 762 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
9388, 92eqbrtrrd 4677 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
941, 8, 9hlatjcl 34653 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑈𝐴) → (𝑆 𝑈) ∈ (Base‘𝐾))
953, 17, 21, 94syl3anc 1326 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 𝑈) ∈ (Base‘𝐾))
961, 2, 8latlej2 17061 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 ((𝑆 𝑈) 𝑇))
975, 95, 60, 96syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ((𝑆 𝑈) 𝑇))
988, 9hlatj32 34658 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) 𝑇))
993, 17, 18, 21, 98syl13anc 1328 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) 𝑇))
10097, 99breqtrrd 4681 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ((𝑆 𝑇) 𝑈))
1011, 2, 5, 60, 25, 31, 100, 33lattrd 17058 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 𝑊)
1021, 2, 8latjle12 17062 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑇 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑇) 𝑊))
1035, 16, 60, 31, 102syl13anc 1328 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑇 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑇) 𝑊))
10432, 101, 103mpbi2and 956 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑇) 𝑊)
105104ad2antrr 762 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) 𝑊)
1063ad2antrr 762 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
10745ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
10812, 18jca 554 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑇𝐴))
109108ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑇𝐴))
11049ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
11151ad2antrr 762 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
112 simpr 477 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
1132, 8, 9, 29lvoli2 34867 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑇𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉)
114107, 109, 110, 111, 112, 113syl113anc 1338 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉)
11528ad2antrr 762 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
1162, 29lvolcmp 34903 . . . . . . 7 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑇) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊))
117106, 114, 115, 116syl3anc 1326 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑇) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊))
118105, 117mpbid 222 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊)
1191, 2, 8latjlej2 17066 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑇 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
1205, 60, 25, 16, 119syl13anc 1328 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑇 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
121100, 120mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
122121ad2antrr 762 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
123118, 122eqbrtrrd 4677 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
12493, 123pm2.61dan 832 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
1251, 8, 9hlatjcl 34653 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
1263, 18, 21, 125syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑇 𝑈) ∈ (Base‘𝐾))
1271, 2, 8latlej1 17060 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → 𝑆 (𝑆 (𝑇 𝑈)))
1285, 58, 126, 127syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 (𝑆 (𝑇 𝑈)))
1291, 8latjass 17095 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
1305, 58, 60, 23, 129syl13anc 1328 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
131128, 130breqtrrd 4681 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 ((𝑆 𝑇) 𝑈))
1321, 2, 5, 58, 25, 31, 131, 33lattrd 17058 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 𝑊)
1331, 2, 8latjle12 17062 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑆 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑆) 𝑊))
1345, 16, 58, 31, 133syl13anc 1328 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑆 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑆) 𝑊))
13532, 132, 134mpbi2and 956 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑆) 𝑊)
136135adantr 481 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) 𝑊)
1373adantr 481 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
13845adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13912, 17jca 554 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑆𝐴))
140139adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑆𝐴))
14149adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
14251adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
143 simpr 477 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
1442, 8, 9, 29lvoli2 34867 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
145138, 140, 141, 142, 143, 144syl113anc 1338 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
14628adantr 481 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
1472, 29lvolcmp 34903 . . . . . 6 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑆) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊))
148137, 145, 146, 147syl3anc 1326 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑆) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊))
149136, 148mpbid 222 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊)
1501, 2, 8latjlej2 17066 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑆 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
1515, 58, 25, 16, 150syl13anc 1328 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
152131, 151mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
153152adantr 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
154149, 153eqbrtrrd 4677 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
155124, 154pm2.61dan 832 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
1561, 2, 5, 27, 31, 36, 155latasymd 17057 1 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  HLchlt 34637  LVolsclvol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  2lplnj  34906
  Copyright terms: Public domain W3C validator