![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilfset | Structured version Visualization version GIF version |
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilset.l | ⊢ ≤ = (le‘𝐾) |
ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
ldilfset | ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . 2 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) | |
2 | fveq2 6191 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
3 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | syl6eqr 2674 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
5 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾)) | |
6 | ldilset.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
7 | 5, 6 | syl6eqr 2674 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼) |
8 | fveq2 6191 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
9 | ldilset.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
10 | 8, 9 | syl6eqr 2674 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
11 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
12 | ldilset.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
13 | 11, 12 | syl6eqr 2674 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
14 | 13 | breqd 4664 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤 ↔ 𝑥 ≤ 𝑤)) |
15 | 14 | imbi1d 331 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
16 | 10, 15 | raleqbidv 3152 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
17 | 7, 16 | rabeqbidv 3195 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) |
18 | 4, 17 | mpteq12dv 4733 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
19 | df-ldil 35390 | . . 3 ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) | |
20 | fvex 6201 | . . . . 5 ⊢ (LHyp‘𝐾) ∈ V | |
21 | 3, 20 | eqeltri 2697 | . . . 4 ⊢ 𝐻 ∈ V |
22 | 21 | mptex 6486 | . . 3 ⊢ (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) ∈ V |
23 | 18, 19, 22 | fvmpt 6282 | . 2 ⊢ (𝐾 ∈ V → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
24 | 1, 23 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 Basecbs 15857 lecple 15948 LHypclh 35270 LAutclaut 35271 LDilcldil 35386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ldil 35390 |
This theorem is referenced by: ldilset 35395 |
Copyright terms: Public domain | W3C validator |