| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2 | Structured version Visualization version GIF version | ||
| Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
| lfldi.p | ⊢ + = (+g‘𝑅) |
| lfldi.t | ⊢ · = (.r‘𝑅) |
| lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsdi2 | ⊢ (𝜑 → (𝐺 ∘𝑓 · ((𝑉 × {𝑋}) ∘𝑓 + (𝑉 × {𝑌}))) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfldi.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | fvex 6201 | . . . 4 ⊢ (Base‘𝑊) ∈ V | |
| 3 | 1, 2 | eqeltri 2697 | . . 3 ⊢ 𝑉 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 5 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | lfldi.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 8 | lfldi.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 9 | lfldi.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 10 | 7, 8, 1, 9 | lflf 34350 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 11 | 5, 6, 10 | syl2anc 693 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 12 | lfldi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 13 | fconst6g 6094 | . . 3 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 15 | lfldi2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 16 | fconst6g 6094 | . . 3 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) |
| 18 | 7 | lmodring 18871 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 19 | 5, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 20 | lfldi.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 21 | lfldi.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 22 | 8, 20, 21 | ringdi 18566 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 23 | 19, 22 | sylan 488 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 24 | 4, 11, 14, 17, 23 | caofdi 6933 | 1 ⊢ (𝜑 → (𝐺 ∘𝑓 · ((𝑉 × {𝑋}) ∘𝑓 + (𝑉 × {𝑌}))) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {csn 4177 × cxp 5112 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 Ringcrg 18547 LModclmod 18863 LFnlclfn 34344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-map 7859 df-ring 18549 df-lmod 18865 df-lfl 34345 |
| This theorem is referenced by: lflvsdi2a 34367 |
| Copyright terms: Public domain | W3C validator |