![]() |
Metamath
Proof Explorer Theorem List (p. 344 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lrelat 34301* | Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 29223 analog.) (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ⊊ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) | ||
Theorem | lssatle 34302* | The ordering of two subspaces is determined by the atoms under them. (chrelat3 29230 analog.) (Contributed by NM, 29-Oct-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) | ||
Theorem | lssat 34303* | Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 29222 analog.) (Contributed by NM, 9-Apr-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑉) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) | ||
Theorem | islshpat 34304* | Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 34267. (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉))) | ||
Syntax | clcv 34305 | Extend class notation with the covering relation for a left module or left vector space. |
class ⋖L | ||
Definition | df-lcv 34306* | Define the covering relation for subspaces of a left vector space. Similar to Definition 3.2.18 of [PtakPulmannova] p. 68. Ptak/Pulmannova's notation 𝐴( ⋖L ‘𝑊)𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See lcvbr 34308 for binary relation. (df-cv 29138 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ ⋖L = (𝑤 ∈ V ↦ {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) | ||
Theorem | lcvfbr 34307* | The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐶 = {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) | ||
Theorem | lcvbr 34308* | The covers relation for a left vector space (or a left module). (cvbr 29141 analog.) (Contributed by NM, 9-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) | ||
Theorem | lcvbr2 34309* | The covers relation for a left vector space (or a left module). (cvbr2 29142 analog.) (Contributed by NM, 9-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) | ||
Theorem | lcvbr3 34310* | The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))))) | ||
Theorem | lcvpss 34311 | The covers relation implies proper subset. (cvpss 29144 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇𝐶𝑈) ⇒ ⊢ (𝜑 → 𝑇 ⊊ 𝑈) | ||
Theorem | lcvnbtwn 34312 | The covers relation implies no in-betweenness. (cvnbtwn 29145 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) ⇒ ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) | ||
Theorem | lcvntr 34313 | The covers relation is not transitive. (cvntr 29151 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) & ⊢ (𝜑 → 𝑇𝐶𝑈) ⇒ ⊢ (𝜑 → ¬ 𝑅𝐶𝑈) | ||
Theorem | lcvnbtwn2 34314 | The covers relation implies no in-betweenness. (cvnbtwn2 29146 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) & ⊢ (𝜑 → 𝑅 ⊊ 𝑈) & ⊢ (𝜑 → 𝑈 ⊆ 𝑇) ⇒ ⊢ (𝜑 → 𝑈 = 𝑇) | ||
Theorem | lcvnbtwn3 34315 | The covers relation implies no in-betweenness. (cvnbtwn3 29147 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) & ⊢ (𝜑 → 𝑅 ⊆ 𝑈) & ⊢ (𝜑 → 𝑈 ⊊ 𝑇) ⇒ ⊢ (𝜑 → 𝑈 = 𝑅) | ||
Theorem | lsmcv2 34316 | Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 29152 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) | ||
Theorem | lcvat 34317* | If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 29225 analog.) (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇𝐶𝑈) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) | ||
Theorem | lsatcv0 34318 | An atom covers the zero subspace. (atcv0 29201 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → { 0 }𝐶𝑄) | ||
Theorem | lsatcveq0 34319 | A subspace covered by an atom must be the zero subspace. (atcveq0 29207 analog.) (Contributed by NM, 7-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑈𝐶𝑄 ↔ 𝑈 = { 0 })) | ||
Theorem | lsat0cv 34320 | A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ { 0 }𝐶𝑈)) | ||
Theorem | lcvexchlem1 34321 | Lemma for lcvexch 34326. (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) | ||
Theorem | lcvexchlem2 34322 | Lemma for lcvexch 34326. (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ 𝑅) & ⊢ (𝜑 → 𝑅 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((𝑅 ⊕ 𝑇) ∩ 𝑈) = 𝑅) | ||
Theorem | lcvexchlem3 34323 | Lemma for lcvexch 34326. (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ⊆ 𝑅) & ⊢ (𝜑 → 𝑅 ⊆ (𝑇 ⊕ 𝑈)) ⇒ ⊢ (𝜑 → ((𝑅 ∩ 𝑈) ⊕ 𝑇) = 𝑅) | ||
Theorem | lcvexchlem4 34324 | Lemma for lcvexch 34326. (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇𝐶(𝑇 ⊕ 𝑈)) ⇒ ⊢ (𝜑 → (𝑇 ∩ 𝑈)𝐶𝑈) | ||
Theorem | lcvexchlem5 34325 | Lemma for lcvexch 34326. (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (𝑇 ∩ 𝑈)𝐶𝑈) ⇒ ⊢ (𝜑 → 𝑇𝐶(𝑇 ⊕ 𝑈)) | ||
Theorem | lcvexch 34326 | Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 29228 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝑇 ∩ 𝑈)𝐶𝑈 ↔ 𝑇𝐶(𝑇 ⊕ 𝑈))) | ||
Theorem | lcvp 34327 | Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 29234 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) | ||
Theorem | lcv1 34328 | Covering property of a subspace plus an atom. (chcv1 29214 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) | ||
Theorem | lcv2 34329 | Covering property of a subspace plus an atom. (chcv2 29215 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑄) ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) | ||
Theorem | lsatexch 34330 | The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 29240 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) & ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) | ||
Theorem | lsatnle 34331 | The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 29235 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ (𝑈 ∩ 𝑄) = { 0 })) | ||
Theorem | lsatnem0 34332 | The meet of distinct atoms is the zero subspace. (atnemeq0 29236 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ (𝑄 ∩ 𝑅) = { 0 })) | ||
Theorem | lsatexch1 34333 | The atom exch1ange property. (hlatexch1 34681 analog.) (Contributed by NM, 14-Jan-2015.) |
⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ⊆ (𝑆 ⊕ 𝑅)) & ⊢ (𝜑 → 𝑄 ≠ 𝑆) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝑆 ⊕ 𝑄)) | ||
Theorem | lsatcv0eq 34334 | If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 29238 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) | ||
Theorem | lsatcv1 34335 | Two atoms covering the zero subspace are equal. (atcv1 29239 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅)) | ||
Theorem | lsatcvatlem 34336 | Lemma for lsatcvat 34337. (Contributed by NM, 10-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ≠ { 0 }) & ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐴) | ||
Theorem | lsatcvat 34337 | A nonzero subspace less than the sum of two atoms is an atom. (atcvati 29245 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ≠ { 0 }) & ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐴) | ||
Theorem | lsatcvat2 34338 | A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 29246 analog.) (Contributed by NM, 10-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐴) | ||
Theorem | lsatcvat3 34339 | A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 29255 analog.) (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) & ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) | ||
Theorem | islshpcv 34340 | Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) | ||
Theorem | l1cvpat 34341 | A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 34761 analog.) (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑈𝐶𝑉) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) | ||
Theorem | l1cvat 34342 | Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 34762 analog.) (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → 𝑈𝐶𝑉) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) | ||
Theorem | lshpat 34343 | Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 35329 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 34341 and l1cvat 34342 to 𝑈 ∈ 𝐻, which in turn change 𝑈 ∈ 𝐻 in islshpcv 34340 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) | ||
Syntax | clfn 34344 | Extend class notation with all linear functionals of a left module or left vector space. |
class LFnl | ||
Definition | df-lfl 34345* | Define the set of all linear functionals (maps from vectors to the ring) of a left module or left vector space. (Contributed by NM, 15-Apr-2014.) |
⊢ LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑𝑚 (Base‘𝑤)) ∣ ∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠 ‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) | ||
Theorem | lflset 34346* | The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑𝑚 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) | ||
Theorem | islfl 34347* | The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))))) | ||
Theorem | lfli 34348 | Property of a linear functional. (lnfnli 28899 analog.) (Contributed by NM, 16-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑍 ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) | ||
Theorem | islfld 34349* | Properties that determine a linear functional. TODO: use this in place of islfl 34347 when it shortens the proof. (Contributed by NM, 19-Oct-2014.) |
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → 𝐷 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐷)) & ⊢ (𝜑 → ⨣ = (+g‘𝐷)) & ⊢ (𝜑 → × = (.r‘𝐷)) & ⊢ (𝜑 → 𝐹 = (LFnl‘𝑊)) & ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
Theorem | lflf 34350 | A linear functional is a function from vectors to scalars. (lnfnfi 28900 analog.) (Contributed by NM, 15-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) | ||
Theorem | lflcl 34351 | A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) | ||
Theorem | lfl0 34352 | A linear functional is zero at the zero vector. (lnfn0i 28901 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑍 = (0g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘𝑍) = 0 ) | ||
Theorem | lfladd 34353 | Property of a linear functional. (lnfnaddi 28902 analog.) (Contributed by NM, 18-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ ⨣ = (+g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) | ||
Theorem | lflsub 34354 | Property of a linear functional. (lnfnaddi 28902 analog.) (Contributed by NM, 18-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝑀 = (-g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = ((𝐺‘𝑋)𝑀(𝐺‘𝑌))) | ||
Theorem | lflmul 34355 | Property of a linear functional. (lnfnmuli 28903 analog.) (Contributed by NM, 16-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) | ||
Theorem | lfl0f 34356 | The zero function is a functional. (Contributed by NM, 16-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹) | ||
Theorem | lfl1 34357* | A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) | ||
Theorem | lfladdcl 34358 | Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 + 𝐻) ∈ 𝐹) | ||
Theorem | lfladdcom 34359 | Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 + 𝐻) = (𝐻 ∘𝑓 + 𝐺)) | ||
Theorem | lfladdass 34360 | Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐺 ∘𝑓 + 𝐻) ∘𝑓 + 𝐼) = (𝐺 ∘𝑓 + (𝐻 ∘𝑓 + 𝐼))) | ||
Theorem | lfladd0l 34361 | Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑉 × { 0 }) ∘𝑓 + 𝐺) = 𝐺) | ||
Theorem | lflnegcl 34362* | Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 34433, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝐹) | ||
Theorem | lflnegl 34363* | A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 34433, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ + = (+g‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑁 ∘𝑓 + 𝐺) = (𝑉 × { 0 })) | ||
Theorem | lflvscl 34364 | Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {𝑅})) ∈ 𝐹) | ||
Theorem | lflvsdi1 34365 | Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐺 ∘𝑓 + 𝐻) ∘𝑓 · (𝑉 × {𝑋})) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐻 ∘𝑓 · (𝑉 × {𝑋})))) | ||
Theorem | lflvsdi2 34366 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · ((𝑉 × {𝑋}) ∘𝑓 + (𝑉 × {𝑌}))) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) | ||
Theorem | lflvsdi2a 34367 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) | ||
Theorem | lflvsass 34368 | Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 · (𝑉 × {𝑌}))) | ||
Theorem | lfl0sc 34369 | The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of (𝑉 × { 0 }) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × { 0 })) = (𝑉 × { 0 })) | ||
Theorem | lflsc0N 34370 | The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑉 × { 0 }) ∘𝑓 · (𝑉 × {𝑋})) = (𝑉 × { 0 })) | ||
Theorem | lfl1sc 34371 | The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × { 1 })) = 𝐺) | ||
Syntax | clk 34372 | Extend class notation with the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. |
class LKer | ||
Definition | df-lkr 34373* | Define the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. (Contributed by NM, 15-Apr-2014.) |
⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))}))) | ||
Theorem | lkrfval 34374* | The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) | ||
Theorem | lkrval 34375 | Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) | ||
Theorem | ellkr 34376 | Membership in the kernel of a functional. (elnlfn 28787 analog.) (Contributed by NM, 16-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) | ||
Theorem | lkrval2 34377* | Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) | ||
Theorem | ellkr2 34378 | Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) | ||
Theorem | lkrcl 34379 | A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) | ||
Theorem | lkrf0 34380 | The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → (𝐺‘𝑋) = 0 ) | ||
Theorem | lkr0f 34381 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) | ||
Theorem | lkrlss 34382 | The kernel of a linear functional is a subspace. (nlelshi 28919 analog.) (Contributed by NM, 16-Apr-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ 𝑆) | ||
Theorem | lkrssv 34383 | The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) ⊆ 𝑉) | ||
Theorem | lkrsc 34384 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑅 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) | ||
Theorem | lkrscss 34385 | The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅})))) | ||
Theorem | eqlkr 34386* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | ||
Theorem | eqlkr2 34387* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘𝑓 · (𝑉 × {𝑟}))) | ||
Theorem | eqlkr3 34388 | Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) & ⊢ (𝜑 → (𝐺‘𝑋) = (𝐻‘𝑋)) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐺 = 𝐻) | ||
Theorem | lkrlsp 34389 | The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 34376) is the whole vector space. (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
Theorem | lkrlsp2 34390 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
Theorem | lkrlsp3 34391 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) | ||
Theorem | lkrshp 34392 | The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) | ||
Theorem | lkrshp3 34393 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) | ||
Theorem | lkrshpor 34394 | The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) | ||
Theorem | lkrshp4 34395 | A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 ↔ (𝐾‘𝐺) ∈ 𝐻)) | ||
Theorem | lshpsmreu 34396* | Lemma for lshpkrex 34405. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3172 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) | ||
Theorem | lshpkrlem1 34397* | Lemma for lshpkrex 34405. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝐺‘𝑋) = 0 )) | ||
Theorem | lshpkrlem2 34398* | Lemma for lshpkrex 34405. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) | ||
Theorem | lshpkrlem3 34399* | Lemma for lshpkrex 34405. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) | ||
Theorem | lshpkrlem4 34400* | Lemma for lshpkrex 34405. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑉 ∧ 𝑠 ∈ 𝑉) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |