MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmres Structured version   Visualization version   GIF version

Theorem lmres 21104
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmres.4 (𝜑𝐹 ∈ (𝑋pm ℂ))
lmres.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmres (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))

Proof of Theorem lmres
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponmax 20730 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
31, 2syl 17 . . . . . 6 (𝜑𝑋𝐽)
4 cnex 10017 . . . . . 6 ℂ ∈ V
5 ssid 3624 . . . . . . 7 𝑋𝑋
6 uzssz 11707 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
7 zsscn 11385 . . . . . . . 8 ℤ ⊆ ℂ
86, 7sstri 3612 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
9 pmss12g 7884 . . . . . . 7 (((𝑋𝑋 ∧ (ℤ𝑀) ⊆ ℂ) ∧ (𝑋𝐽 ∧ ℂ ∈ V)) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
105, 8, 9mpanl12 718 . . . . . 6 ((𝑋𝐽 ∧ ℂ ∈ V) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
113, 4, 10sylancl 694 . . . . 5 (𝜑 → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
12 fvex 6201 . . . . . 6 (ℤ𝑀) ∈ V
13 lmres.4 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
14 pmresg 7885 . . . . . 6 (((ℤ𝑀) ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1512, 13, 14sylancr 695 . . . . 5 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1611, 15sseldd 3604 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ))
1716, 132thd 255 . . 3 (𝜑 → ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ↔ 𝐹 ∈ (𝑋pm ℂ)))
18 eqid 2622 . . . . . . . . . 10 (ℤ𝑀) = (ℤ𝑀)
1918uztrn2 11705 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑀))
20 dmres 5419 . . . . . . . . . . . 12 dom (𝐹 ↾ (ℤ𝑀)) = ((ℤ𝑀) ∩ dom 𝐹)
2120elin2 3801 . . . . . . . . . . 11 (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑘 ∈ dom 𝐹))
2221baib 944 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ 𝑘 ∈ dom 𝐹))
23 fvres 6207 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
2423eleq1d 2686 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2522, 24anbi12d 747 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2619, 25syl 17 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2726ralbidva 2985 . . . . . . 7 (𝑗 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2827rexbiia 3040 . . . . . 6 (∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
2928imbi2i 326 . . . . 5 ((𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3029ralbii 2980 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3130a1i 11 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3217, 313anbi13d 1401 . 2 (𝜑 → (((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
33 lmres.5 . . 3 (𝜑𝑀 ∈ ℤ)
341, 18, 33lmbr2 21063 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃 ↔ ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)))))
351, 18, 33lmbr2 21063 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
3632, 34, 353bitr4rd 301 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  dom cdm 5114  cres 5116  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  cz 11377  cuz 11687  TopOnctopon 20715  𝑡clm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-top 20699  df-topon 20716  df-lm 21033
This theorem is referenced by:  esumcvg  30148  xlimres  40047
  Copyright terms: Public domain W3C validator