MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppropd Structured version   Visualization version   GIF version

Theorem lsppropd 19018
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lsspropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsspropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsspropd.w (𝜑𝐵𝑊)
lsspropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsspropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
lsspropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lsspropd.p1 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
lsspropd.p2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
lsspropd.v1 (𝜑𝐾 ∈ V)
lsspropd.v2 (𝜑𝐿 ∈ V)
Assertion
Ref Expression
lsppropd (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦

Proof of Theorem lsppropd
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lsspropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2658 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
43pweqd 4163 . . 3 (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿))
5 lsspropd.w . . . . . 6 (𝜑𝐵𝑊)
6 lsspropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 lsspropd.s1 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
8 lsspropd.s2 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
9 lsspropd.p1 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
10 lsspropd.p2 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
111, 2, 5, 6, 7, 8, 9, 10lsspropd 19017 . . . . 5 (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿))
12 rabeq 3192 . . . . 5 ((LSubSp‘𝐾) = (LSubSp‘𝐿) → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
1311, 12syl 17 . . . 4 (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
1413inteqd 4480 . . 3 (𝜑 {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
154, 14mpteq12dv 4733 . 2 (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
16 lsspropd.v1 . . 3 (𝜑𝐾 ∈ V)
17 eqid 2622 . . . 4 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2622 . . . 4 (LSubSp‘𝐾) = (LSubSp‘𝐾)
19 eqid 2622 . . . 4 (LSpan‘𝐾) = (LSpan‘𝐾)
2017, 18, 19lspfval 18973 . . 3 (𝐾 ∈ V → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
2116, 20syl 17 . 2 (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
22 lsspropd.v2 . . 3 (𝜑𝐿 ∈ V)
23 eqid 2622 . . . 4 (Base‘𝐿) = (Base‘𝐿)
24 eqid 2622 . . . 4 (LSubSp‘𝐿) = (LSubSp‘𝐿)
25 eqid 2622 . . . 4 (LSpan‘𝐿) = (LSpan‘𝐿)
2623, 24, 25lspfval 18973 . . 3 (𝐿 ∈ V → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2722, 26syl 17 . 2 (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2815, 21, 273eqtr4d 2666 1 (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   cint 4475  cmpt 4729  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  LSubSpclss 18932  LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lbspropd  19099  lidlrsppropd  19230
  Copyright terms: Public domain W3C validator