| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 9697 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 3834 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 3635 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3573 ⊆ wss 3574 E cep 5028 × cxp 5112 Ncnpi 9666 <N clti 9669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-lti 9697 |
| This theorem is referenced by: ltapi 9725 ltmpi 9726 nlt1pi 9728 indpi 9729 ordpipq 9764 ltsonq 9791 archnq 9802 |
| Copyright terms: Public domain | W3C validator |