MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 9710
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 9694 . . . 4 N = (ω ∖ {∅})
2 difss 3737 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7069 . . . . 5 ω ⊆ On
42, 3sstri 3612 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 3635 . . 3 N ⊆ On
6 epweon 6983 . . . 4 E We On
7 weso 5105 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5053 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 9697 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5054 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5183 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 267 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 221 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  cdif 3571  cin 3573  wss 3574  c0 3915  {csn 4177   E cep 5028   Or wor 5034   We wwe 5072   × cxp 5112  Oncon0 5723  ωcom 7065  Ncnpi 9666   <N clti 9669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-ni 9694  df-lti 9697
This theorem is referenced by:  indpi  9729  nqereu  9751  ltsonq  9791  archnq  9802
  Copyright terms: Public domain W3C validator