![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5419 | . . 3 ⊢ dom ( +𝑜 ↾ (N × N)) = ((N × N) ∩ dom +𝑜 ) | |
2 | fnoa 7588 | . . . . 5 ⊢ +𝑜 Fn (On × On) | |
3 | fndm 5990 | . . . . 5 ⊢ ( +𝑜 Fn (On × On) → dom +𝑜 = (On × On)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +𝑜 = (On × On) |
5 | 4 | ineq2i 3811 | . . 3 ⊢ ((N × N) ∩ dom +𝑜 ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2644 | . 2 ⊢ dom ( +𝑜 ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-pli 9695 | . . 3 ⊢ +N = ( +𝑜 ↾ (N × N)) | |
8 | 7 | dmeqi 5325 | . 2 ⊢ dom +N = dom ( +𝑜 ↾ (N × N)) |
9 | df-ni 9694 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3737 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3635 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 7069 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3612 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 676 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 221 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 5225 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3589 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 220 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2654 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 × cxp 5112 dom cdm 5114 ↾ cres 5116 Oncon0 5723 Fn wfn 5883 ωcom 7065 +𝑜 coa 7557 Ncnpi 9666 +N cpli 9667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-oadd 7564 df-ni 9694 df-pli 9695 |
This theorem is referenced by: addcompi 9716 addasspi 9717 distrpi 9720 addcanpi 9721 addnidpi 9723 ltapi 9725 |
Copyright terms: Public domain | W3C validator |