MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 9802
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 9747 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 7198 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 9705 . . 3 1𝑜N
5 addclpi 9714 . . 3 (((1st𝐴) ∈ N ∧ 1𝑜N) → ((1st𝐴) +N 1𝑜) ∈ N)
63, 4, 5sylancl 694 . 2 (𝐴Q → ((1st𝐴) +N 1𝑜) ∈ N)
7 xp2nd 7199 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 9715 . . . . 5 ((((1st𝐴) +N 1𝑜) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 693 . . . 4 (𝐴Q → (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N)
11 eqid 2622 . . . . . . 7 ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)
12 oveq2 6658 . . . . . . . . 9 (𝑥 = 1𝑜 → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜))
1312eqeq1d 2624 . . . . . . . 8 (𝑥 = 1𝑜 → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜) ↔ ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)))
1413rspcev 3309 . . . . . . 7 ((1𝑜N ∧ ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜))
154, 11, 14mp2an 708 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜)
16 ltexpi 9724 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1𝑜) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1𝑜) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜)))
1715, 16mpbiri 248 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1𝑜) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1𝑜))
183, 6, 17syl2anc 693 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1𝑜))
19 nlt1pi 9728 . . . . 5 ¬ (2nd𝐴) <N 1𝑜
20 ltmpi 9726 . . . . . . 7 (((1st𝐴) +N 1𝑜) ∈ N → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜)))
22 mulidpi 9708 . . . . . . . 8 (((1st𝐴) +N 1𝑜) ∈ N → (((1st𝐴) +N 1𝑜) ·N 1𝑜) = ((1st𝐴) +N 1𝑜))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1𝑜) ·N 1𝑜) = ((1st𝐴) +N 1𝑜))
2423breq2d 4665 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜) ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)))
2521, 24bitrd 268 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)))
2619, 25mtbii 316 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜))
27 ltsopi 9710 . . . . 5 <N Or N
28 ltrelpi 9711 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 5526 . . . 4 (((((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1𝑜) ∧ ¬ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)) → (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1326 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
31 pinq 9749 . . . . . 6 (((1st𝐴) +N 1𝑜) ∈ N → ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q)
33 ordpinq 9765 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴))))
3432, 33mpdan 702 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴))))
35 ovex 6678 . . . . . . . 8 ((1st𝐴) +N 1𝑜) ∈ V
364elexi 3213 . . . . . . . 8 1𝑜 ∈ V
3735, 36op2nd 7177 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) = 1𝑜
3837oveq2i 6661 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) = ((1st𝐴) ·N 1𝑜)
39 mulidpi 9708 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
4138, 40syl5eq 2668 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) = (1st𝐴))
4235, 36op1st 7176 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) = ((1st𝐴) +N 1𝑜)
4342oveq1i 6660 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
4541, 44breq12d 4666 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))))
4634, 45bitrd 268 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))))
4730, 46mpbird 247 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)
48 opeq1 4402 . . . 4 (𝑥 = ((1st𝐴) +N 1𝑜) → ⟨𝑥, 1𝑜⟩ = ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)
4948breq2d 4665 . . 3 (𝑥 = ((1st𝐴) +N 1𝑜) → (𝐴 <Q𝑥, 1𝑜⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩))
5049rspcev 3309 . 2 ((((1st𝐴) +N 1𝑜) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
516, 47, 50syl2anc 693 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cop 4183   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  Ncnpi 9666   +N cpli 9667   ·N cmi 9668   <N clti 9669  Qcnq 9674   <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-ltpq 9732  df-nq 9734  df-ltnq 9740
This theorem is referenced by:  prlem934  9855
  Copyright terms: Public domain W3C validator