Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lub0N Structured version   Visualization version   GIF version

Theorem lub0N 34476
Description: The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lub0.u 1 = (lub‘𝐾)
lub0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
lub0N (𝐾 ∈ OP → ( 1 ‘∅) = 0 )

Proof of Theorem lub0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2622 . . 3 (le‘𝐾) = (le‘𝐾)
3 lub0.u . . 3 1 = (lub‘𝐾)
4 biid 251 . . 3 ((∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 3972 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7lubval 16984 . 2 (𝐾 ∈ OP → ( 1 ‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
9 lub0.z . . . 4 0 = (0.‘𝐾)
101, 9op0cl 34471 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
11 ral0 4076 . . . . . . 7 𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧
1211a1bi 352 . . . . . 6 (𝑥(le‘𝐾)𝑧 ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))
1312ralbii 2980 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))
14 ral0 4076 . . . . . 6 𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥
1514biantrur 527 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
1613, 15bitri 264 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧 ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
1710adantr 481 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾))
18 breq2 4657 . . . . . . . 8 (𝑧 = 0 → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
1918rspcv 3305 . . . . . . 7 ( 0 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
211, 2, 9ople0 34474 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾) 0𝑥 = 0 ))
2220, 21sylibd 229 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥 = 0 ))
231, 2, 9op0le 34473 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑧)
2423adantlr 751 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑧)
2524ex 450 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 0 (le‘𝐾)𝑧))
26 breq1 4656 . . . . . . . . 9 (𝑥 = 0 → (𝑥(le‘𝐾)𝑧0 (le‘𝐾)𝑧))
2726biimprcd 240 . . . . . . . 8 ( 0 (le‘𝐾)𝑧 → (𝑥 = 0𝑥(le‘𝐾)𝑧))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 0𝑥(le‘𝐾)𝑧)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 0 → (𝑧 ∈ (Base‘𝐾) → 𝑥(le‘𝐾)𝑧)))
3029ralrimdv 2968 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 0 → ∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧))
3122, 30impbid 202 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥 = 0 ))
3216, 31syl5bbr 274 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = 0 ))
3310, 32riota5 6637 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = 0 )
348, 33eqtrd 2656 1 (𝐾 ∈ OP → ( 1 ‘∅) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  crio 6610  Basecbs 15857  lecple 15948  lubclub 16942  0.cp0 17037  OPcops 34459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-p0 17039  df-oposet 34463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator