MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubval Structured version   Visualization version   GIF version

Theorem lubval 16984
Description: Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
lubval.b 𝐵 = (Base‘𝐾)
lubval.l = (le‘𝐾)
lubval.u 𝑈 = (lub‘𝐾)
lubval.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubval.k (𝜑𝐾𝑉)
lubval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
lubval (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubval.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubval.l . . . . 5 = (le‘𝐾)
3 lubval.u . . . . 5 𝑈 = (lub‘𝐾)
4 biid 251 . . . . 5 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubval.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝐾𝑉)
71, 2, 3, 4, 6lubfval 16978 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
87fveq1d 6193 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆))
9 lubval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
10 simpr 477 . . . . . 6 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ dom 𝑈)
111, 2, 3, 9, 6, 10lubeu 16983 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → ∃!𝑥𝐵 𝜓)
12 raleq 3138 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
13 raleq 3138 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
1413imbi1d 331 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514ralbidv 2986 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1612, 15anbi12d 747 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1716, 9syl6bbr 278 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ 𝜓))
1817reubidv 3126 . . . . . . 7 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1918elabg 3351 . . . . . 6 (𝑆 ∈ dom 𝑈 → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2019adantl 482 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2111, 20mpbird 247 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
22 fvres 6207 . . . 4 (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
2321, 22syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
24 lubval.s . . . . . 6 (𝜑𝑆𝐵)
2524adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆𝐵)
26 fvex 6201 . . . . . . 7 (Base‘𝐾) ∈ V
271, 26eqeltri 2697 . . . . . 6 𝐵 ∈ V
2827elpw2 4828 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2925, 28sylibr 224 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ 𝒫 𝐵)
3017riotabidv 6613 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 𝜓))
31 eqid 2622 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
32 riotaex 6615 . . . . 5 (𝑥𝐵 𝜓) ∈ V
3330, 31, 32fvmpt 6282 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
3429, 33syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
358, 23, 343eqtrd 2660 . 2 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
36 ndmfv 6218 . . . 4 𝑆 ∈ dom 𝑈 → (𝑈𝑆) = ∅)
3736adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = ∅)
381, 2, 3, 9, 5lubeldm 16981 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3938biimprd 238 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝑈))
4024, 39mpand 711 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝑈))
4140con3dimp 457 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → ¬ ∃!𝑥𝐵 𝜓)
42 riotaund 6647 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
4341, 42syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑥𝐵 𝜓) = ∅)
4437, 43eqtr4d 2659 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
4535, 44pm2.61dan 832 1 (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  ∃!wreu 2914  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  dom cdm 5114  cres 5116  cfv 5888  crio 6610  Basecbs 15857  lecple 15948  lubclub 16942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-lub 16974
This theorem is referenced by:  lubcl  16985  lubprop  16986  lubid  16990  joinval2  17009  lubun  17123  poslubd  17148  toslub  29668  lub0N  34476  glbconN  34663
  Copyright terms: Public domain W3C validator