Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lub0N Structured version   Visualization version   Unicode version

Theorem lub0N 34476
Description: The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lub0.u  |-  .1.  =  ( lub `  K )
lub0.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
lub0N  |-  ( K  e.  OP  ->  (  .1.  `  (/) )  =  .0.  )

Proof of Theorem lub0N
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2622 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 lub0.u . . 3  |-  .1.  =  ( lub `  K )
4 biid 251 . . 3  |-  ( ( A. y  e.  (/)  y ( le `  K ) x  /\  A. z  e.  ( Base `  K ) ( A. y  e.  (/)  y ( le `  K ) z  ->  x ( le `  K ) z ) )  <->  ( A. y  e.  (/)  y ( le `  K ) x  /\  A. z  e.  ( Base `  K
) ( A. y  e.  (/)  y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) )
5 id 22 . . 3  |-  ( K  e.  OP  ->  K  e.  OP )
6 0ss 3972 . . . 4  |-  (/)  C_  ( Base `  K )
76a1i 11 . . 3  |-  ( K  e.  OP  ->  (/)  C_  ( Base `  K ) )
81, 2, 3, 4, 5, 7lubval 16984 . 2  |-  ( K  e.  OP  ->  (  .1.  `  (/) )  =  (
iota_ x  e.  ( Base `  K ) ( A. y  e.  (/)  y ( le `  K ) x  /\  A. z  e.  ( Base `  K ) ( A. y  e.  (/)  y ( le `  K ) z  ->  x ( le `  K ) z ) ) ) )
9 lub0.z . . . 4  |-  .0.  =  ( 0. `  K )
101, 9op0cl 34471 . . 3  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
11 ral0 4076 . . . . . . 7  |-  A. y  e.  (/)  y ( le
`  K ) z
1211a1bi 352 . . . . . 6  |-  ( x ( le `  K
) z  <->  ( A. y  e.  (/)  y ( le `  K ) z  ->  x ( le `  K ) z ) )
1312ralbii 2980 . . . . 5  |-  ( A. z  e.  ( Base `  K ) x ( le `  K ) z  <->  A. z  e.  (
Base `  K )
( A. y  e.  (/)  y ( le `  K ) z  ->  x ( le `  K ) z ) )
14 ral0 4076 . . . . . 6  |-  A. y  e.  (/)  y ( le
`  K ) x
1514biantrur 527 . . . . 5  |-  ( A. z  e.  ( Base `  K ) ( A. y  e.  (/)  y ( le `  K ) z  ->  x ( le `  K ) z )  <->  ( A. y  e.  (/)  y ( le
`  K ) x  /\  A. z  e.  ( Base `  K
) ( A. y  e.  (/)  y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) )
1613, 15bitri 264 . . . 4  |-  ( A. z  e.  ( Base `  K ) x ( le `  K ) z  <->  ( A. y  e.  (/)  y ( le
`  K ) x  /\  A. z  e.  ( Base `  K
) ( A. y  e.  (/)  y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) )
1710adantr 481 . . . . . . 7  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  ->  .0.  e.  ( Base `  K
) )
18 breq2 4657 . . . . . . . 8  |-  ( z  =  .0.  ->  (
x ( le `  K ) z  <->  x ( le `  K )  .0.  ) )
1918rspcv 3305 . . . . . . 7  |-  (  .0. 
e.  ( Base `  K
)  ->  ( A. z  e.  ( Base `  K ) x ( le `  K ) z  ->  x ( le `  K )  .0.  ) )
2017, 19syl 17 . . . . . 6  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( A. z  e.  ( Base `  K
) x ( le
`  K ) z  ->  x ( le
`  K )  .0.  ) )
211, 2, 9ople0 34474 . . . . . 6  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( x ( le
`  K )  .0.  <->  x  =  .0.  ) )
2220, 21sylibd 229 . . . . 5  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( A. z  e.  ( Base `  K
) x ( le
`  K ) z  ->  x  =  .0.  ) )
231, 2, 9op0le 34473 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  z  e.  ( Base `  K ) )  ->  .0.  ( le `  K
) z )
2423adantlr 751 . . . . . . . . 9  |-  ( ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  /\  z  e.  ( Base `  K ) )  ->  .0.  ( le `  K
) z )
2524ex 450 . . . . . . . 8  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( z  e.  (
Base `  K )  ->  .0.  ( le `  K ) z ) )
26 breq1 4656 . . . . . . . . 9  |-  ( x  =  .0.  ->  (
x ( le `  K ) z  <->  .0.  ( le `  K ) z ) )
2726biimprcd 240 . . . . . . . 8  |-  (  .0.  ( le `  K
) z  ->  (
x  =  .0.  ->  x ( le `  K
) z ) )
2825, 27syl6 35 . . . . . . 7  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( z  e.  (
Base `  K )  ->  ( x  =  .0. 
->  x ( le `  K ) z ) ) )
2928com23 86 . . . . . 6  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( x  =  .0. 
->  ( z  e.  (
Base `  K )  ->  x ( le `  K ) z ) ) )
3029ralrimdv 2968 . . . . 5  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( x  =  .0. 
->  A. z  e.  (
Base `  K )
x ( le `  K ) z ) )
3122, 30impbid 202 . . . 4  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( A. z  e.  ( Base `  K
) x ( le
`  K ) z  <-> 
x  =  .0.  )
)
3216, 31syl5bbr 274 . . 3  |-  ( ( K  e.  OP  /\  x  e.  ( Base `  K ) )  -> 
( ( A. y  e.  (/)  y ( le
`  K ) x  /\  A. z  e.  ( Base `  K
) ( A. y  e.  (/)  y ( le
`  K ) z  ->  x ( le
`  K ) z ) )  <->  x  =  .0.  ) )
3310, 32riota5 6637 . 2  |-  ( K  e.  OP  ->  ( iota_ x  e.  ( Base `  K ) ( A. y  e.  (/)  y ( le `  K ) x  /\  A. z  e.  ( Base `  K
) ( A. y  e.  (/)  y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) )  =  .0.  )
348, 33eqtrd 2656 1  |-  ( K  e.  OP  ->  (  .1.  `  (/) )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888   iota_crio 6610   Basecbs 15857   lecple 15948   lubclub 16942   0.cp0 17037   OPcops 34459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-p0 17039  df-oposet 34463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator