![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maprnin | Structured version Visualization version GIF version |
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
Ref | Expression |
---|---|
maprnin.1 | ⊢ 𝐴 ∈ V |
maprnin.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
maprnin | ⊢ ((𝐵 ∩ 𝐶) ↑𝑚 𝐴) = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6045 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) | |
2 | df-f 5892 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐶)) | |
3 | 2 | baibr 945 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
5 | 4 | pm5.32i 669 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) |
6 | maprnin.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
7 | maprnin.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
8 | 6, 7 | elmap 7886 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝐵) |
9 | 8 | anbi1i 731 | . . . 4 ⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶)) |
10 | fin 6085 | . . . 4 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) | |
11 | 5, 9, 10 | 3bitr4ri 293 | . . 3 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∧ ran 𝑓 ⊆ 𝐶)) |
12 | 11 | abbii 2739 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} |
13 | 6 | inex1 4799 | . . 3 ⊢ (𝐵 ∩ 𝐶) ∈ V |
14 | 13, 7 | mapval 7869 | . 2 ⊢ ((𝐵 ∩ 𝐶) ↑𝑚 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} |
15 | df-rab 2921 | . 2 ⊢ {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ran 𝑓 ⊆ 𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} | |
16 | 12, 14, 15 | 3eqtr4i 2654 | 1 ⊢ ((𝐵 ∩ 𝐶) ↑𝑚 𝐴) = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ran crn 5115 Fn wfn 5883 ⟶wf 5884 (class class class)co 6650 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 |
This theorem is referenced by: fpwrelmapffs 29509 |
Copyright terms: Public domain | W3C validator |