Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maprnin Structured version   Visualization version   GIF version

Theorem maprnin 29506
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.)
Hypotheses
Ref Expression
maprnin.1 𝐴 ∈ V
maprnin.2 𝐵 ∈ V
Assertion
Ref Expression
maprnin ((𝐵𝐶) ↑𝑚 𝐴) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ran 𝑓𝐶}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓

Proof of Theorem maprnin
StepHypRef Expression
1 ffn 6045 . . . . . 6 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2 df-f 5892 . . . . . . 7 (𝑓:𝐴𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐶))
32baibr 945 . . . . . 6 (𝑓 Fn 𝐴 → (ran 𝑓𝐶𝑓:𝐴𝐶))
41, 3syl 17 . . . . 5 (𝑓:𝐴𝐵 → (ran 𝑓𝐶𝑓:𝐴𝐶))
54pm5.32i 669 . . . 4 ((𝑓:𝐴𝐵 ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
6 maprnin.2 . . . . . 6 𝐵 ∈ V
7 maprnin.1 . . . . . 6 𝐴 ∈ V
86, 7elmap 7886 . . . . 5 (𝑓 ∈ (𝐵𝑚 𝐴) ↔ 𝑓:𝐴𝐵)
98anbi1i 731 . . . 4 ((𝑓 ∈ (𝐵𝑚 𝐴) ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵 ∧ ran 𝑓𝐶))
10 fin 6085 . . . 4 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
115, 9, 103bitr4ri 293 . . 3 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓 ∈ (𝐵𝑚 𝐴) ∧ ran 𝑓𝐶))
1211abbii 2739 . 2 {𝑓𝑓:𝐴⟶(𝐵𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵𝑚 𝐴) ∧ ran 𝑓𝐶)}
136inex1 4799 . . 3 (𝐵𝐶) ∈ V
1413, 7mapval 7869 . 2 ((𝐵𝐶) ↑𝑚 𝐴) = {𝑓𝑓:𝐴⟶(𝐵𝐶)}
15 df-rab 2921 . 2 {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ran 𝑓𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵𝑚 𝐴) ∧ ran 𝑓𝐶)}
1612, 14, 153eqtr4i 2654 1 ((𝐵𝐶) ↑𝑚 𝐴) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ran 𝑓𝐶}
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  Vcvv 3200  cin 3573  wss 3574  ran crn 5115   Fn wfn 5883  wf 5884  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  fpwrelmapffs  29509
  Copyright terms: Public domain W3C validator