![]() |
Metamath
Proof Explorer Theorem List (p. 296 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fcobijfs 29501* | Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 8313. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑆) & ⊢ 𝑄 = (𝐺‘𝑂) & ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑𝑚 𝑅) ∣ 𝑔 finSupp 𝑂} & ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑𝑚 𝑅) ∣ ℎ finSupp 𝑄} ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) | ||
Theorem | suppss3 29502* | Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑍) → 𝐵 = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | ffs2 29503 | Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq 7307. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐶 = (𝐵 ∖ {𝑍}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) | ||
Theorem | ffsrn 29504 | The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
Theorem | resf1o 29505* | Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ 𝑋 = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶} & ⊢ 𝐹 = (𝑓 ∈ 𝑋 ↦ (𝑓 ↾ 𝐶)) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝐹:𝑋–1-1-onto→(𝐵 ↑𝑚 𝐶)) | ||
Theorem | maprnin 29506* | Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∩ 𝐶) ↑𝑚 𝐴) = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ran 𝑓 ⊆ 𝐶} | ||
Theorem | fpwrelmapffslem 29507* | Lemma for fpwrelmapffs 29509. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐹:𝐴⟶𝒫 𝐵) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))}) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))) | ||
Theorem | fpwrelmap 29508* | Define a canonical mapping between functions from 𝐴 into subsets of 𝐵 and the relations with domain 𝐴 and range within 𝐵. Note that the same relation is used in axdc2lem 9270 and marypha2lem1 8341. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ⇒ ⊢ 𝑀:(𝒫 𝐵 ↑𝑚 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) | ||
Theorem | fpwrelmapffs 29509* | Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) & ⊢ 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑𝑚 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} ⇒ ⊢ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) | ||
Theorem | addeq0 29510 | Two complex which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 2-May-2017.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)) | ||
Theorem | subeqxfrd 29511 | Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐷)) | ||
Theorem | znsqcld 29512 | Squaring of nonzero relative numbers. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ≠ 0) ⇒ ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) | ||
Theorem | nn0sqeq1 29513 | Integer square one. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) | ||
Theorem | 1neg1t1neg1 29514 | An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1) | ||
Theorem | nnmulge 29515 | Multiplying by an integer 𝑀 yields greater or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑀 · 𝑁)) | ||
Theorem | lt2addrd 29516* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrlelttric 29517 | Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | xaddeq0 29518 | Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵)) | ||
Theorem | xrinfm 29519 | The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ inf(ℝ*, ℝ*, < ) = -∞ | ||
Theorem | le2halvesd 29520 | A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐶 / 2)) & ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 2)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ 𝐶) | ||
Theorem | xraddge02 29521 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → 𝐴 ≤ (𝐴 +𝑒 𝐵))) | ||
Theorem | xrge0addge 29522 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 𝐴 ≤ (𝐴 +𝑒 𝐵)) | ||
Theorem | xlt2addrd 29523* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≠ -∞) & ⊢ (𝜑 → 𝐶 ≠ -∞) & ⊢ (𝜑 → 𝐴 < (𝐵 +𝑒 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ* ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrsupssd 29524 | Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) | ||
Theorem | xrge0infss 29525* | Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | xrge0infssd 29526 | Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) ⇒ ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) | ||
Theorem | xrge0addcld 29527 | Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | xrge0subcld 29528 | Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) | ||
Theorem | infxrge0lb 29529 | A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) | ||
Theorem | infxrge0glb 29530* | The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | ||
Theorem | infxrge0gelb 29531* | The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
Theorem | dfrp2 29532 | Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ ℝ+ = (0(,)+∞) | ||
Theorem | xrofsup 29533 | The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ*) & ⊢ (𝜑 → 𝑌 ⊆ ℝ*) & ⊢ (𝜑 → sup(𝑋, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → sup(𝑌, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → 𝑍 = ( +𝑒 “ (𝑋 × 𝑌))) ⇒ ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(𝑌, ℝ*, < ))) | ||
Theorem | supxrnemnf 29534 | The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) | ||
Theorem | xrhaus 29535 | The topology of the extended reals is Hausdorff. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ (ordTop‘ ≤ ) ∈ Haus | ||
Theorem | joiniooico 29536 | Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ ∧ ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))) | ||
Theorem | ubico 29537 | A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴[,)𝐵)) | ||
Theorem | xeqlelt 29538 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
Theorem | eliccelico 29539 | Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵))) | ||
Theorem | elicoelioo 29540 | Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵)))) | ||
Theorem | iocinioc2 29541 | Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) | ||
Theorem | xrdifh 29542 | Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.) |
⊢ 𝐴 ∈ ℝ* ⇒ ⊢ (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴) | ||
Theorem | iocinif 29543 | Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶))) | ||
Theorem | difioo 29544 | The difference between two open intervals sharing the same lower bound. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶)) | ||
Theorem | difico 29545 | The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) | ||
Theorem | uzssico 29546 | Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) | ||
Theorem | fz2ssnn0 29547 | A finite set of sequential integers that is a subset of ℕ0. (Contributed by Thierry Arnoux, 8-Dec-2021.) |
⊢ (𝑀 ∈ ℕ0 → (𝑀...𝑁) ⊆ ℕ0) | ||
Theorem | nndiffz1 29548 | Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
⊢ (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ≥‘(𝑁 + 1))) | ||
Theorem | ssnnssfz 29549* | For any finite subset of ℕ, find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
⊢ (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛)) | ||
Theorem | fzspl 29550 | Split the last element of a finite set of sequential integers. (more generic than fzsuc 12388) (Contributed by Thierry Arnoux, 7-Nov-2016.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) | ||
Theorem | fzdif2 29551 | Split the last element of a finite set of sequential integers. (more generic than fzsuc 12388) (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∖ {𝑁}) = (𝑀...(𝑁 − 1))) | ||
Theorem | fzodif2 29552 | Split the last element of a half-open range of sequential integers. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀..^(𝑁 + 1)) ∖ {𝑁}) = (𝑀..^𝑁)) | ||
Theorem | fzsplit3 29553 | Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) | ||
Theorem | bcm1n 29554 | The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.) |
⊢ ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁 − 𝐾) / 𝑁)) | ||
Theorem | iundisjfi 29555* | Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 23316. (Contributed by Thierry Arnoux, 15-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ (1..^𝑁)𝐴 = ∪ 𝑛 ∈ (1..^𝑁)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisj2fi 29556* | A disjoint union is disjoint, finite version. Cf. iundisj2 23317. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ (1..^𝑁)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisjcnt 29557* | Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) | ||
Theorem | iundisj2cnt 29558* | A countable disjoint union is disjoint. Cf. iundisj2 23317. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) ⇒ ⊢ (𝜑 → Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) | ||
Theorem | f1ocnt 29559* | Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with ℕ or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 29557 or iundisj2cnt 29558. (Contributed by Thierry Arnoux, 25-Jul-2020.) |
⊢ (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓–1-1-onto→𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((#‘𝐴) + 1))))) | ||
Theorem | fz1nnct 29560 | NN and integer ranges starting from 1 are countable. (Contributed by Thierry Arnoux, 25-Jul-2020.) |
⊢ ((𝐴 = ℕ ∨ 𝐴 = (1..^𝑀)) → 𝐴 ≼ ω) | ||
Theorem | fz1nntr 29561 | NN and integer ranges starting from 1 are a transitive family of set. (Contributed by Thierry Arnoux, 25-Jul-2020.) |
⊢ (((𝐴 = ℕ ∨ 𝐴 = (1..^𝑀)) ∧ 𝑁 ∈ 𝐴) → (1..^𝑁) ⊆ 𝐴) | ||
Theorem | hashunif 29562* | The cardinality of a disjoint finite union of finite sets. Cf. hashuni 14558. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (#‘∪ 𝐴) = Σ𝑥 ∈ 𝐴 (#‘𝑥)) | ||
Theorem | numdenneg 29563 | Numerator and denominator of the negative. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
⊢ (𝑄 ∈ ℚ → ((numer‘-𝑄) = -(numer‘𝑄) ∧ (denom‘-𝑄) = (denom‘𝑄))) | ||
Theorem | divnumden2 29564 | Calculate the reduced form of a quotient using gcd. This version extends divnumden 15456 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))) | ||
Theorem | nnindf 29565* | Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
Theorem | nnindd 29566* | Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) | ||
Theorem | nn0min 29567* | Extracting the minimum positive integer for which a property 𝜒 does not hold. This uses substitutions similar to nn0ind 11472. (Contributed by Thierry Arnoux, 6-May-2018.) |
⊢ (𝑛 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑚 → (𝜓 ↔ 𝜃)) & ⊢ (𝑛 = (𝑚 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℕ0 (¬ 𝜃 ∧ 𝜏)) | ||
Theorem | ltesubnnd 29568 | Subtracting an integer number from another number decreases it. See ltsubrpd 11904. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑀 + 1) − 𝑁) ≤ 𝑀) | ||
Theorem | fprodeq02 29569* | If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
Theorem | pr01ssre 29570 | The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
⊢ {0, 1} ⊆ ℝ | ||
Theorem | fprodex01 29571* | A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝑘 = 𝑙 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ {0, 1}) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = if(∀𝑙 ∈ 𝐴 𝐶 = 1, 1, 0)) | ||
Theorem | prodpr 29572* | A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) & ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) | ||
Theorem | prodtp 29573* | A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) & ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺)) | ||
Theorem | fsumub 29574* | An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (𝑘 = 𝐾 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐷 ≤ 𝐶) | ||
Theorem | fsumiunle 29575* | Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) | ||
Theorem | dfdec100 29576 | Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) | ||
Define a decimal expansion constructor. The decimal expansions built with this constructor are not meant to be used alone outside of this chapter. Rather, they are meant to be used exclusively as part of a decimal number with a decimal fraction, for example (3._1_4_1_59). That decimal point operator is defined in the next section. The bulk of these constructions have originally been proposed by David A. Wheeler on 12-May-2015, and discussed with Mario Carneiro in this thread: https://groups.google.com/g/metamath/c/2AW7T3d2YiQ. | ||
Syntax | cdp2 29577 | Constant used for decimal fraction constructor. See df-dp2 29578. |
class _𝐴𝐵 | ||
Definition | df-dp2 29578 | Define the "decimal fraction constructor", which is used to build up "decimal fractions" in base 10. This is intentionally similar to df-dec 11494. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | ||
Theorem | dfdp2OLD 29579 | Obsolete version of df-dp2 29578 as of 9-Sep-2021. (Contributed by David A. Wheeler, 15-May-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ _𝐴𝐵 = (𝐴 + (𝐵 / 10)) | ||
Theorem | dp2eq1 29580 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 = 𝐵 → _𝐴𝐶 = _𝐵𝐶) | ||
Theorem | dp2eq2 29581 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 = 𝐵 → _𝐶𝐴 = _𝐶𝐵) | ||
Theorem | dp2eq1i 29582 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ _𝐴𝐶 = _𝐵𝐶 | ||
Theorem | dp2eq2i 29583 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ _𝐶𝐴 = _𝐶𝐵 | ||
Theorem | dp2eq12i 29584 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ _𝐴𝐶 = _𝐵𝐷 | ||
Theorem | dp20u 29585 | Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ _𝐴0 = 𝐴 | ||
Theorem | dp20h 29586 | Add a zero in the unit places. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℝ+ ⇒ ⊢ _0𝐴 = (𝐴 / ;10) | ||
Theorem | dp2cl 29587 | Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | ||
Theorem | dp2clq 29588 | Closure for a decimal fraction. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℚ ⇒ ⊢ _𝐴𝐵 ∈ ℚ | ||
Theorem | rpdp2cl 29589 | Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ _𝐴𝐵 ∈ ℝ+ | ||
Theorem | rpdp2cl2 29590 | Closure for a decimal fraction with no decimal expansion in the positive real numbers. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ _𝐴0 ∈ ℝ+ | ||
Theorem | dp2lt10 29591 | Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐴 < ;10 & ⊢ 𝐵 < ;10 ⇒ ⊢ _𝐴𝐵 < ;10 | ||
Theorem | dp2lt 29592 | Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℝ+ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ _𝐴𝐵 < _𝐴𝐶 | ||
Theorem | dp2ltsuc 29593 | Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐵 < ;10 & ⊢ (𝐴 + 1) = 𝐶 ⇒ ⊢ _𝐴𝐵 < 𝐶 | ||
Theorem | dp2ltc 29594 | Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐵 < ;10 & ⊢ 𝐴 < 𝐶 ⇒ ⊢ _𝐴𝐵 < _𝐶𝐷 | ||
Define the decimal point operator and the decimal fraction constructor. This can model traditional decimal point notation, and serve as a convenient way to write some fractional numbers. See df-dp 29596 and df-dp2 29578 for more information; dpval2 29601 and dpfrac1 29599 provide a more convenient way to obtain a value. This is intentionally similar to df-dec 11494. | ||
Syntax | cdp 29595 | Decimal point operator. See df-dp 29596. |
class . | ||
Definition | df-dp 29596* |
Define the . (decimal point) operator. For example,
(1.5) = (3 / 2), and
-(;32._7_18) =
-(;;;;32718 / ;;;1000)
Unary minus, if applied, should normally be applied in front of the
parentheses.
Metamath intentionally does not have a built-in construct for numbers, so it can show that numbers are something you can build based on set theory. However, that means that metamath has no built-in way to parse and handle decimal numbers as traditionally written, e.g., "2.54". Here we create a system for modeling traditional decimal point notation; it is not syntactically identical, but it is sufficiently similar so it is a reasonable model of decimal point notation. It should also serve as a convenient way to write some fractional numbers. The RHS is ℝ, not ℚ; this should simplify some proofs. The LHS is ℕ0, since that is what is used in practice. The definition intentionally does not allow negative numbers on the LHS; if it did, nonzero fractions would produce the wrong results. (It would be possible to define the decimal point to do this, but using it would be more complicated, and the expression -(𝐴.𝐵) is just as convenient.) (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | ||
Theorem | dpval 29597 | Define the value of the decimal point operator. See df-dp 29596. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | ||
Theorem | dpcl 29598 | Prove that the closure of the decimal point is ℝ as we have defined it. See df-dp 29596. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ) | ||
Theorem | dpfrac1 29599 | Prove a simple equivalence involving the decimal point. See df-dp 29596 and dpcl 29598. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) | ||
Theorem | dpfrac1OLD 29600 | Obsolete version of dpfrac1 29599 as of 9-Sep-2021. (Contributed by David A. Wheeler, 15-May-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / 10)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |