Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapssbi Structured version   Visualization version   GIF version

Theorem mapssbi 39405
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapssbi.a (𝜑𝐴𝑉)
mapssbi.b (𝜑𝐵𝑊)
mapssbi.c (𝜑𝐶𝑍)
mapssbi.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapssbi (𝜑 → (𝐴𝐵 ↔ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))

Proof of Theorem mapssbi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapssbi.b . . . . 5 (𝜑𝐵𝑊)
21adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 477 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 7900 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
52, 3, 4syl2anc 693 . . 3 ((𝜑𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
65ex 450 . 2 (𝜑 → (𝐴𝐵 → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))
7 simplr 792 . . . 4 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ ¬ 𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
8 nssrex 39260 . . . . . . . 8 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
98biimpi 206 . . . . . . 7 𝐴𝐵 → ∃𝑥𝐴 ¬ 𝑥𝐵)
109adantl 482 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
11 fconst6g 6094 . . . . . . . . . . . . 13 (𝑥𝐴 → (𝐶 × {𝑥}):𝐶𝐴)
1211adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}):𝐶𝐴)
13 mapssbi.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
14 mapssbi.c . . . . . . . . . . . . . 14 (𝜑𝐶𝑍)
15 elmapg 7870 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐶𝑍) → ((𝐶 × {𝑥}) ∈ (𝐴𝑚 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1613, 14, 15syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 × {𝑥}) ∈ (𝐴𝑚 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1716adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐶 × {𝑥}) ∈ (𝐴𝑚 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1812, 17mpbird 247 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}) ∈ (𝐴𝑚 𝐶))
19183adant3 1081 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝐶 × {𝑥}) ∈ (𝐴𝑚 𝐶))
2014adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → 𝐶𝑍)
211adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → 𝐵𝑊)
22 mapssbi.n . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ ∅)
2322adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → 𝐶 ≠ ∅)
24 simpr 477 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶))
2520, 21, 23, 24snelmap 39254 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → 𝑥𝐵)
2625adantlr 751 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → 𝑥𝐵)
27 simplr 792 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → ¬ 𝑥𝐵)
2826, 27pm2.65da 600 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶))
29283adant2 1080 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶))
30 nelss 3664 . . . . . . . . . 10 (((𝐶 × {𝑥}) ∈ (𝐴𝑚 𝐶) ∧ ¬ (𝐶 × {𝑥}) ∈ (𝐵𝑚 𝐶)) → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
3119, 29, 30syl2anc 693 . . . . . . . . 9 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
32313exp 1264 . . . . . . . 8 (𝜑 → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))))
3332adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))))
3433rexlimdv 3030 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → (∃𝑥𝐴 ¬ 𝑥𝐵 → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))
3510, 34mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
3635adantlr 751 . . . 4 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ ¬ 𝐴𝐵) → ¬ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
377, 36condan 835 . . 3 ((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) → 𝐴𝐵)
3837ex 450 . 2 (𝜑 → ((𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → 𝐴𝐵))
396, 38impbid 202 1 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794  wrex 2913  wss 3574  c0 3915  {csn 4177   × cxp 5112  wf 5884  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator