MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval Structured version   Visualization version   GIF version

Theorem marepvval 20373
Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
Assertion
Ref Expression
marepvval ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem marepvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . 5 𝐵 = (Base‘𝐴)
3 marepvfval.q . . . . 5 𝑄 = (𝑁 matRepV 𝑅)
4 marepvfval.v . . . . 5 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
51, 2, 3, 4marepvval0 20372 . . . 4 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
653adant3 1081 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
76fveq1d 6193 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾))
8 simp3 1063 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝐾𝑁)
91, 2matrcl 20218 . . . . . . 7 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 475 . . . . . 6 (𝑀𝐵𝑁 ∈ Fin)
1110, 10jca 554 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
12113ad2ant1 1082 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
13 mpt2exga 7246 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
1412, 13syl 17 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
15 eqeq2 2633 . . . . . 6 (𝑘 = 𝐾 → (𝑗 = 𝑘𝑗 = 𝐾))
1615ifbid 4108 . . . . 5 (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)))
1716mpt2eq3dv 6721 . . . 4 (𝑘 = 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
18 eqid 2622 . . . 4 (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
1917, 18fvmptg 6280 . . 3 ((𝐾𝑁 ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
208, 14, 19syl2anc 693 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
217, 20eqtrd 2656 1 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857   Mat cmat 20213   matRepV cmatrepV 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-mat 20214  df-marepv 20365
This theorem is referenced by:  marepveval  20374  marepvcl  20375  1marepvmarrepid  20381  cramerimplem2  20490
  Copyright terms: Public domain W3C validator