![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1comp | Structured version Visualization version GIF version |
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mat1comp | ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2626 | . . 3 ⊢ (𝑖 = 𝐴 → (𝑖 = 𝑗 ↔ 𝐴 = 𝑗)) | |
2 | 1 | ifbid 4108 | . 2 ⊢ (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 )) |
3 | eqeq2 2633 | . . 3 ⊢ (𝑗 = 𝐽 → (𝐴 = 𝑗 ↔ 𝐴 = 𝐽)) | |
4 | 3 | ifbid 4108 | . 2 ⊢ (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 )) |
5 | mamumat1cl.i | . 2 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
6 | mamumat1cl.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
7 | fvex 6201 | . . . 4 ⊢ (1r‘𝑅) ∈ V | |
8 | 6, 7 | eqeltri 2697 | . . 3 ⊢ 1 ∈ V |
9 | mamumat1cl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
10 | fvex 6201 | . . . 4 ⊢ (0g‘𝑅) ∈ V | |
11 | 9, 10 | eqeltri 2697 | . . 3 ⊢ 0 ∈ V |
12 | 8, 11 | ifex 4156 | . 2 ⊢ if(𝐴 = 𝐽, 1 , 0 ) ∈ V |
13 | 2, 4, 5, 12 | ovmpt2 6796 | 1 ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 Fincfn 7955 Basecbs 15857 0gc0g 16100 1rcur 18501 Ringcrg 18547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
This theorem is referenced by: mamulid 20247 mamurid 20248 |
Copyright terms: Public domain | W3C validator |