MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamurid Structured version   Visualization version   GIF version

Theorem mamurid 20248
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamurid.f 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
mamurid.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑀)))
Assertion
Ref Expression
mamurid (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamurid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamurid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2622 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Ring)
6 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑁 ∈ Fin)
8 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
98adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑀 ∈ Fin)
10 mamurid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑀)))
1110adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑀)))
12 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
13 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
14 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
152, 4, 12, 13, 14, 8mamumat1cl 20245 . . . . . 6 (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
1615adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
17 simprl 794 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑙𝑁)
18 simprr 796 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑚𝑀)
191, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18mamufv 20193 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))))
20 ringmnd 18556 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Mnd)
224ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑅 ∈ Ring)
23 elmapi 7879 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
2410, 23syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑁 × 𝑀)⟶𝐵)
2524ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
26 simplrl 800 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑙𝑁)
27 simpr 477 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑘𝑀)
2825, 26, 27fovrnd 6806 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑙𝑋𝑘) ∈ 𝐵)
29 elmapi 7879 . . . . . . . . . 10 (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
3130ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
32 simplrr 801 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑚𝑀)
3331, 27, 32fovrnd 6806 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑘𝐼𝑚) ∈ 𝐵)
342, 3ringcl 18561 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝐼𝑚) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1326 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
36 eqid 2622 . . . . . 6 (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) = (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))
3735, 36fmptd 6385 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))):𝑀𝐵)
38 simp2 1062 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑘𝑀)
39323adant3 1081 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑚𝑀)
402, 4, 12, 13, 14, 8mat1comp 20246 . . . . . . . . . 10 ((𝑘𝑀𝑚𝑀) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
4138, 39, 40syl2anc 693 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
42 ifnefalse 4098 . . . . . . . . . 10 (𝑘𝑚 → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
43423ad2ant3 1084 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
4441, 43eqtrd 2656 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = 0 )
4544oveq2d 6666 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑘)(.r𝑅) 0 ))
462, 3, 13ringrz 18588 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4722, 28, 46syl2anc 693 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
48473adant3 1081 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4945, 48eqtrd 2656 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = 0 )
5049, 9suppsssn 7330 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) supp 0 ) ⊆ {𝑚})
512, 13, 21, 9, 18, 37, 50gsumpt 18361 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))) = ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚))
52 oveq2 6658 . . . . . . . 8 (𝑘 = 𝑚 → (𝑙𝑋𝑘) = (𝑙𝑋𝑚))
53 oveq1 6657 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐼𝑚) = (𝑚𝐼𝑚))
5452, 53oveq12d 6668 . . . . . . 7 (𝑘 = 𝑚 → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
55 ovex 6678 . . . . . . 7 ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) ∈ V
5654, 36, 55fvmpt 6282 . . . . . 6 (𝑚𝑀 → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
5756ad2antll 765 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
58 equequ1 1952 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝑖 = 𝑗𝑚 = 𝑗))
5958ifbid 4108 . . . . . . . . 9 (𝑖 = 𝑚 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑗, 1 , 0 ))
60 equequ2 1953 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝑚 = 𝑗𝑚 = 𝑚))
6160ifbid 4108 . . . . . . . . . 10 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑚, 1 , 0 ))
62 eqid 2622 . . . . . . . . . . 11 𝑚 = 𝑚
6362iftruei 4093 . . . . . . . . . 10 if(𝑚 = 𝑚, 1 , 0 ) = 1
6461, 63syl6eq 2672 . . . . . . . . 9 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = 1 )
65 fvex 6201 . . . . . . . . . 10 (1r𝑅) ∈ V
6612, 65eqeltri 2697 . . . . . . . . 9 1 ∈ V
6759, 64, 14, 66ovmpt2 6796 . . . . . . . 8 ((𝑚𝑀𝑚𝑀) → (𝑚𝐼𝑚) = 1 )
6867anidms 677 . . . . . . 7 (𝑚𝑀 → (𝑚𝐼𝑚) = 1 )
6968oveq2d 6666 . . . . . 6 (𝑚𝑀 → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
7069ad2antll 765 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
7124fovrnda 6805 . . . . . 6 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙𝑋𝑚) ∈ 𝐵)
722, 3, 12ringridm 18572 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑚) ∈ 𝐵) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
735, 71, 72syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
7457, 70, 733eqtrd 2660 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = (𝑙𝑋𝑚))
7519, 51, 743eqtrd 2660 . . 3 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
7675ralrimivva 2971 . 2 (𝜑 → ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
772, 4, 1, 6, 8, 8, 10, 15mamucl 20207 . . . . 5 (𝜑 → (𝑋𝐹𝐼) ∈ (𝐵𝑚 (𝑁 × 𝑀)))
78 elmapi 7879 . . . . 5 ((𝑋𝐹𝐼) ∈ (𝐵𝑚 (𝑁 × 𝑀)) → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7977, 78syl 17 . . . 4 (𝜑 → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
80 ffn 6045 . . . 4 ((𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀))
8179, 80syl 17 . . 3 (𝜑 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀))
82 ffn 6045 . . . 4 (𝑋:(𝑁 × 𝑀)⟶𝐵𝑋 Fn (𝑁 × 𝑀))
8324, 82syl 17 . . 3 (𝜑𝑋 Fn (𝑁 × 𝑀))
84 eqfnov2 6767 . . 3 (((𝑋𝐹𝐼) Fn (𝑁 × 𝑀) ∧ 𝑋 Fn (𝑁 × 𝑀)) → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8581, 83, 84syl2anc 693 . 2 (𝜑 → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8676, 85mpbird 247 1 (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  ifcif 4086  cotp 4185  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  1rcur 18501  Ringcrg 18547   maMul cmmul 20189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-mamu 20190
This theorem is referenced by:  matring  20249  mat1  20253
  Copyright terms: Public domain W3C validator