MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1comp Structured version   Visualization version   Unicode version

Theorem mat1comp 20246
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b  |-  B  =  ( Base `  R
)
mamumat1cl.r  |-  ( ph  ->  R  e.  Ring )
mamumat1cl.o  |-  .1.  =  ( 1r `  R )
mamumat1cl.z  |-  .0.  =  ( 0g `  R )
mamumat1cl.i  |-  I  =  ( i  e.  M ,  j  e.  M  |->  if ( i  =  j ,  .1.  ,  .0.  ) )
mamumat1cl.m  |-  ( ph  ->  M  e.  Fin )
Assertion
Ref Expression
mat1comp  |-  ( ( A  e.  M  /\  J  e.  M )  ->  ( A I J )  =  if ( A  =  J ,  .1.  ,  .0.  ) )
Distinct variable groups:    i, j, B    i, M, j    ph, i,
j    A, i, j    i, J, j    .0. , i, j    .1. , i, j
Allowed substitution hints:    R( i, j)    I( i, j)

Proof of Theorem mat1comp
StepHypRef Expression
1 eqeq1 2626 . . 3  |-  ( i  =  A  ->  (
i  =  j  <->  A  =  j ) )
21ifbid 4108 . 2  |-  ( i  =  A  ->  if ( i  =  j ,  .1.  ,  .0.  )  =  if ( A  =  j ,  .1.  ,  .0.  ) )
3 eqeq2 2633 . . 3  |-  ( j  =  J  ->  ( A  =  j  <->  A  =  J ) )
43ifbid 4108 . 2  |-  ( j  =  J  ->  if ( A  =  j ,  .1.  ,  .0.  )  =  if ( A  =  J ,  .1.  ,  .0.  ) )
5 mamumat1cl.i . 2  |-  I  =  ( i  e.  M ,  j  e.  M  |->  if ( i  =  j ,  .1.  ,  .0.  ) )
6 mamumat1cl.o . . . 4  |-  .1.  =  ( 1r `  R )
7 fvex 6201 . . . 4  |-  ( 1r
`  R )  e. 
_V
86, 7eqeltri 2697 . . 3  |-  .1.  e.  _V
9 mamumat1cl.z . . . 4  |-  .0.  =  ( 0g `  R )
10 fvex 6201 . . . 4  |-  ( 0g
`  R )  e. 
_V
119, 10eqeltri 2697 . . 3  |-  .0.  e.  _V
128, 11ifex 4156 . 2  |-  if ( A  =  J ,  .1.  ,  .0.  )  e. 
_V
132, 4, 5, 12ovmpt2 6796 1  |-  ( ( A  e.  M  /\  J  e.  M )  ->  ( A I J )  =  if ( A  =  J ,  .1.  ,  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   0gc0g 16100   1rcur 18501   Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  mamulid  20247  mamurid  20248
  Copyright terms: Public domain W3C validator