MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmb1mgm1 Structured version   Visualization version   GIF version

Theorem mgmb1mgm1 17254
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b 𝐵 = (Base‘𝑀)
mgmb1mgm1.p + = (+g𝑀)
Assertion
Ref Expression
mgmb1mgm1 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mgmb1mgm1.p . . . . . 6 + = (+g𝑀)
3 eqid 2622 . . . . . 6 (+𝑓𝑀) = (+𝑓𝑀)
41, 2, 3plusfeq 17249 . . . . 5 ( + Fn (𝐵 × 𝐵) → (+𝑓𝑀) = + )
51, 3mgmplusf 17251 . . . . . 6 (𝑀 ∈ Mgm → (+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵)
6 feq1 6026 . . . . . 6 ((+𝑓𝑀) = + → ((+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵+ :(𝐵 × 𝐵)⟶𝐵))
75, 6syl5ib 234 . . . . 5 ((+𝑓𝑀) = + → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵))
84, 7syl 17 . . . 4 ( + Fn (𝐵 × 𝐵) → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵))
98impcom 446 . . 3 ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵)
1093adant2 1080 . 2 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵)
11 simp2 1062 . 2 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → 𝑍𝐵)
12 intopsn 17253 . 2 (( + :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
1310, 11, 12syl2anc 693 1 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  {csn 4177  cop 4183   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  Basecbs 15857  +gcplusg 15941  +𝑓cplusf 17239  Mgmcmgm 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-plusf 17241  df-mgm 17242
This theorem is referenced by:  srg1zr  18529
  Copyright terms: Public domain W3C validator