MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Structured version   Visualization version   GIF version

Theorem nqerf 9752
Description: Corollary of nqereu 9751: the function [Q] is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf [Q]:(N × N)⟶Q

Proof of Theorem nqerf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 9735 . . . . . . 7 [Q] = ( ~Q ∩ ((N × N) × Q))
2 inss2 3834 . . . . . . 7 ( ~Q ∩ ((N × N) × Q)) ⊆ ((N × N) × Q)
31, 2eqsstri 3635 . . . . . 6 [Q] ⊆ ((N × N) × Q)
4 xpss 5226 . . . . . 6 ((N × N) × Q) ⊆ (V × V)
53, 4sstri 3612 . . . . 5 [Q] ⊆ (V × V)
6 df-rel 5121 . . . . 5 (Rel [Q] ↔ [Q] ⊆ (V × V))
75, 6mpbir 221 . . . 4 Rel [Q]
8 nqereu 9751 . . . . . . . 8 (𝑥 ∈ (N × N) → ∃!𝑦Q 𝑦 ~Q 𝑥)
9 df-reu 2919 . . . . . . . . 9 (∃!𝑦Q 𝑦 ~Q 𝑥 ↔ ∃!𝑦(𝑦Q𝑦 ~Q 𝑥))
10 eumo 2499 . . . . . . . . 9 (∃!𝑦(𝑦Q𝑦 ~Q 𝑥) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
119, 10sylbi 207 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
128, 11syl 17 . . . . . . 7 (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥))
13 moanimv 2531 . . . . . . 7 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) ↔ (𝑥 ∈ (N × N) → ∃*𝑦(𝑦Q𝑦 ~Q 𝑥)))
1412, 13mpbir 221 . . . . . 6 ∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥))
153brel 5168 . . . . . . . . 9 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ 𝑦Q))
1615simpld 475 . . . . . . . 8 (𝑥[Q]𝑦𝑥 ∈ (N × N))
1715simprd 479 . . . . . . . 8 (𝑥[Q]𝑦𝑦Q)
18 enqer 9743 . . . . . . . . . 10 ~Q Er (N × N)
1918a1i 11 . . . . . . . . 9 (𝑥[Q]𝑦 → ~Q Er (N × N))
20 inss1 3833 . . . . . . . . . . 11 ( ~Q ∩ ((N × N) × Q)) ⊆ ~Q
211, 20eqsstri 3635 . . . . . . . . . 10 [Q] ⊆ ~Q
2221ssbri 4697 . . . . . . . . 9 (𝑥[Q]𝑦𝑥 ~Q 𝑦)
2319, 22ersym 7754 . . . . . . . 8 (𝑥[Q]𝑦𝑦 ~Q 𝑥)
2416, 17, 23jca32 558 . . . . . . 7 (𝑥[Q]𝑦 → (𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)))
2524moimi 2520 . . . . . 6 (∃*𝑦(𝑥 ∈ (N × N) ∧ (𝑦Q𝑦 ~Q 𝑥)) → ∃*𝑦 𝑥[Q]𝑦)
2614, 25ax-mp 5 . . . . 5 ∃*𝑦 𝑥[Q]𝑦
2726ax-gen 1722 . . . 4 𝑥∃*𝑦 𝑥[Q]𝑦
28 dffun6 5903 . . . 4 (Fun [Q] ↔ (Rel [Q] ∧ ∀𝑥∃*𝑦 𝑥[Q]𝑦))
297, 27, 28mpbir2an 955 . . 3 Fun [Q]
30 dmss 5323 . . . . . 6 ([Q] ⊆ ((N × N) × Q) → dom [Q] ⊆ dom ((N × N) × Q))
313, 30ax-mp 5 . . . . 5 dom [Q] ⊆ dom ((N × N) × Q)
32 1nq 9750 . . . . . 6 1QQ
33 ne0i 3921 . . . . . 6 (1QQQ ≠ ∅)
34 dmxp 5344 . . . . . 6 (Q ≠ ∅ → dom ((N × N) × Q) = (N × N))
3532, 33, 34mp2b 10 . . . . 5 dom ((N × N) × Q) = (N × N)
3631, 35sseqtri 3637 . . . 4 dom [Q] ⊆ (N × N)
37 reurex 3160 . . . . . . . 8 (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑦 ~Q 𝑥)
38 simpll 790 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ∈ (N × N))
39 simplr 792 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦Q)
4018a1i 11 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → ~Q Er (N × N))
41 simpr 477 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑦 ~Q 𝑥)
4240, 41ersym 7754 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥 ~Q 𝑦)
431breqi 4659 . . . . . . . . . . . 12 (𝑥[Q]𝑦𝑥( ~Q ∩ ((N × N) × Q))𝑦)
44 brinxp2 5180 . . . . . . . . . . . 12 (𝑥( ~Q ∩ ((N × N) × Q))𝑦 ↔ (𝑥 ∈ (N × N) ∧ 𝑦Q𝑥 ~Q 𝑦))
4543, 44bitri 264 . . . . . . . . . . 11 (𝑥[Q]𝑦 ↔ (𝑥 ∈ (N × N) ∧ 𝑦Q𝑥 ~Q 𝑦))
4638, 39, 42, 45syl3anbrc 1246 . . . . . . . . . 10 (((𝑥 ∈ (N × N) ∧ 𝑦Q) ∧ 𝑦 ~Q 𝑥) → 𝑥[Q]𝑦)
4746ex 450 . . . . . . . . 9 ((𝑥 ∈ (N × N) ∧ 𝑦Q) → (𝑦 ~Q 𝑥𝑥[Q]𝑦))
4847reximdva 3017 . . . . . . . 8 (𝑥 ∈ (N × N) → (∃𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦Q 𝑥[Q]𝑦))
49 rexex 3002 . . . . . . . 8 (∃𝑦Q 𝑥[Q]𝑦 → ∃𝑦 𝑥[Q]𝑦)
5037, 48, 49syl56 36 . . . . . . 7 (𝑥 ∈ (N × N) → (∃!𝑦Q 𝑦 ~Q 𝑥 → ∃𝑦 𝑥[Q]𝑦))
518, 50mpd 15 . . . . . 6 (𝑥 ∈ (N × N) → ∃𝑦 𝑥[Q]𝑦)
52 vex 3203 . . . . . . 7 𝑥 ∈ V
5352eldm 5321 . . . . . 6 (𝑥 ∈ dom [Q] ↔ ∃𝑦 𝑥[Q]𝑦)
5451, 53sylibr 224 . . . . 5 (𝑥 ∈ (N × N) → 𝑥 ∈ dom [Q])
5554ssriv 3607 . . . 4 (N × N) ⊆ dom [Q]
5636, 55eqssi 3619 . . 3 dom [Q] = (N × N)
57 df-fn 5891 . . 3 ([Q] Fn (N × N) ↔ (Fun [Q] ∧ dom [Q] = (N × N)))
5829, 56, 57mpbir2an 955 . 2 [Q] Fn (N × N)
59 rnss 5354 . . . 4 ([Q] ⊆ ((N × N) × Q) → ran [Q] ⊆ ran ((N × N) × Q))
603, 59ax-mp 5 . . 3 ran [Q] ⊆ ran ((N × N) × Q)
61 rnxpss 5566 . . 3 ran ((N × N) × Q) ⊆ Q
6260, 61sstri 3612 . 2 ran [Q] ⊆ Q
63 df-f 5892 . 2 ([Q]:(N × N)⟶Q ↔ ([Q] Fn (N × N) ∧ ran [Q] ⊆ Q))
6458, 62, 63mpbir2an 955 1 [Q]:(N × N)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  ∃*wmo 2471  wne 2794  wrex 2913  ∃!wreu 2914  Vcvv 3200  cin 3573  wss 3574  c0 3915   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  Rel wrel 5119  Fun wfun 5882   Fn wfn 5883  wf 5884   Er wer 7739  Ncnpi 9666   ~Q ceq 9673  Qcnq 9674  1Qc1q 9675  [Q]cerq 9676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-enq 9733  df-nq 9734  df-erq 9735  df-1nq 9738
This theorem is referenced by:  nqercl  9753  nqerrel  9754  nqerid  9755  addnqf  9770  mulnqf  9771  adderpq  9778  mulerpq  9779  lterpq  9792
  Copyright terms: Public domain W3C validator