MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom5 Structured version   Visualization version   GIF version

Theorem brdom5 9351
Description: An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom5 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom5
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 9350 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 alral 2928 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦)
43anim1i 592 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
54eximi 1762 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
62, 5sylbi 207 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
7 inss2 3834 . . . . . . . . . . . . . 14 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
8 dmss 5323 . . . . . . . . . . . . . 14 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
97, 8ax-mp 5 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
10 dmxpss 5565 . . . . . . . . . . . . 13 dom (𝐵 × 𝐴) ⊆ 𝐵
119, 10sstri 3612 . . . . . . . . . . . 12 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1211sseli 3599 . . . . . . . . . . 11 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
13 inss1 3833 . . . . . . . . . . . . 13 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
1413ssbri 4697 . . . . . . . . . . . 12 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
1514moimi 2520 . . . . . . . . . . 11 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
1612, 15imim12i 62 . . . . . . . . . 10 ((𝑥𝐵 → ∃*𝑦 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
1716ralimi2 2949 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
18 relxp 5227 . . . . . . . . . 10 Rel (𝐵 × 𝐴)
19 relin2 5237 . . . . . . . . . 10 (Rel (𝐵 × 𝐴) → Rel (𝑓 ∩ (𝐵 × 𝐴)))
2018, 19ax-mp 5 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
2117, 20jctil 560 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
22 dffun7 5915 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2321, 22sylibr 224 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
24 funfn 5918 . . . . . . 7 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
2523, 24sylib 208 . . . . . 6 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
26 rninxp 5573 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
2726biimpri 218 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
2825, 27anim12i 590 . . . . 5 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
29 df-fo 5894 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
3028, 29sylibr 224 . . . 4 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
31 vex 3203 . . . . . . 7 𝑓 ∈ V
3231inex1 4799 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
3332dmex 7099 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
3433fodom 9344 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
35 ssdomg 8001 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
361, 11, 35mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
37 domtr 8009 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
3836, 37mpan2 707 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
3930, 34, 383syl 18 . . 3 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
4039exlimiv 1858 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
416, 40impbii 199 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃*wmo 2471  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  Rel wrel 5119  Fun wfun 5882   Fn wfn 5883  ontowfo 5886  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  brdom6disj  9354
  Copyright terms: Public domain W3C validator