Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstval Structured version   Visualization version   GIF version

Theorem mpstval 31432
Description: A pre-statement is an ordered triple, whose first member is a symmetric set of dv conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v 𝑉 = (mDV‘𝑇)
mpstval.e 𝐸 = (mEx‘𝑇)
mpstval.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstval 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
Distinct variable groups:   𝑇,𝑑   𝑉,𝑑
Allowed substitution hints:   𝑃(𝑑)   𝐸(𝑑)

Proof of Theorem mpstval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mpstval.p . 2 𝑃 = (mPreSt‘𝑇)
2 fveq2 6191 . . . . . . . . 9 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
3 mpstval.v . . . . . . . . 9 𝑉 = (mDV‘𝑇)
42, 3syl6eqr 2674 . . . . . . . 8 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝑉)
54pweqd 4163 . . . . . . 7 (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝑉)
65rabeqdv 3194 . . . . . 6 (𝑡 = 𝑇 → {𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} = {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑})
7 fveq2 6191 . . . . . . . . 9 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
8 mpstval.e . . . . . . . . 9 𝐸 = (mEx‘𝑇)
97, 8syl6eqr 2674 . . . . . . . 8 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
109pweqd 4163 . . . . . . 7 (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸)
1110ineq1d 3813 . . . . . 6 (𝑡 = 𝑇 → (𝒫 (mEx‘𝑡) ∩ Fin) = (𝒫 𝐸 ∩ Fin))
126, 11xpeq12d 5140 . . . . 5 (𝑡 = 𝑇 → ({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) = ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)))
1312, 9xpeq12d 5140 . . . 4 (𝑡 = 𝑇 → (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡)) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
14 df-mpst 31390 . . . 4 mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡)))
15 fvex 6201 . . . . . . . . 9 (mDV‘𝑇) ∈ V
163, 15eqeltri 2697 . . . . . . . 8 𝑉 ∈ V
1716pwex 4848 . . . . . . 7 𝒫 𝑉 ∈ V
1817rabex 4813 . . . . . 6 {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∈ V
19 fvex 6201 . . . . . . . . 9 (mEx‘𝑇) ∈ V
208, 19eqeltri 2697 . . . . . . . 8 𝐸 ∈ V
2120pwex 4848 . . . . . . 7 𝒫 𝐸 ∈ V
2221inex1 4799 . . . . . 6 (𝒫 𝐸 ∩ Fin) ∈ V
2318, 22xpex 6962 . . . . 5 ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∈ V
2423, 20xpex 6962 . . . 4 (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ∈ V
2513, 14, 24fvmpt 6282 . . 3 (𝑇 ∈ V → (mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
26 xp0 5552 . . . . 5 (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅) = ∅
2726eqcomi 2631 . . . 4 ∅ = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅)
28 fvprc 6185 . . . 4 𝑇 ∈ V → (mPreSt‘𝑇) = ∅)
29 fvprc 6185 . . . . . 6 𝑇 ∈ V → (mEx‘𝑇) = ∅)
308, 29syl5eq 2668 . . . . 5 𝑇 ∈ V → 𝐸 = ∅)
3130xpeq2d 5139 . . . 4 𝑇 ∈ V → (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅))
3227, 28, 313eqtr4a 2682 . . 3 𝑇 ∈ V → (mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
3325, 32pm2.61i 176 . 2 (mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
341, 33eqtri 2644 1 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cin 3573  c0 3915  𝒫 cpw 4158   × cxp 5112  ccnv 5113  cfv 5888  Fincfn 7955  mExcmex 31364  mDVcmdv 31365  mPreStcmpst 31370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mpst 31390
This theorem is referenced by:  elmpst  31433  mpstssv  31436
  Copyright terms: Public domain W3C validator