Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstval Structured version   Visualization version   Unicode version

Theorem mpstval 31432
Description: A pre-statement is an ordered triple, whose first member is a symmetric set of dv conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v  |-  V  =  (mDV `  T )
mpstval.e  |-  E  =  (mEx `  T )
mpstval.p  |-  P  =  (mPreSt `  T )
Assertion
Ref Expression
mpstval  |-  P  =  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E )
Distinct variable groups:    T, d    V, d
Allowed substitution hints:    P( d)    E( d)

Proof of Theorem mpstval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 mpstval.p . 2  |-  P  =  (mPreSt `  T )
2 fveq2 6191 . . . . . . . . 9  |-  ( t  =  T  ->  (mDV `  t )  =  (mDV
`  T ) )
3 mpstval.v . . . . . . . . 9  |-  V  =  (mDV `  T )
42, 3syl6eqr 2674 . . . . . . . 8  |-  ( t  =  T  ->  (mDV `  t )  =  V )
54pweqd 4163 . . . . . . 7  |-  ( t  =  T  ->  ~P (mDV `  t )  =  ~P V )
65rabeqdv 3194 . . . . . 6  |-  ( t  =  T  ->  { d  e.  ~P (mDV `  t )  |  `' d  =  d }  =  { d  e.  ~P V  |  `' d  =  d } )
7 fveq2 6191 . . . . . . . . 9  |-  ( t  =  T  ->  (mEx `  t )  =  (mEx
`  T ) )
8 mpstval.e . . . . . . . . 9  |-  E  =  (mEx `  T )
97, 8syl6eqr 2674 . . . . . . . 8  |-  ( t  =  T  ->  (mEx `  t )  =  E )
109pweqd 4163 . . . . . . 7  |-  ( t  =  T  ->  ~P (mEx `  t )  =  ~P E )
1110ineq1d 3813 . . . . . 6  |-  ( t  =  T  ->  ( ~P (mEx `  t )  i^i  Fin )  =  ( ~P E  i^i  Fin ) )
126, 11xpeq12d 5140 . . . . 5  |-  ( t  =  T  ->  ( { d  e.  ~P (mDV `  t )  |  `' d  =  d }  X.  ( ~P (mEx `  t )  i^i  Fin ) )  =  ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) ) )
1312, 9xpeq12d 5140 . . . 4  |-  ( t  =  T  ->  (
( { d  e. 
~P (mDV `  t
)  |  `' d  =  d }  X.  ( ~P (mEx `  t
)  i^i  Fin )
)  X.  (mEx `  t ) )  =  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E ) )
14 df-mpst 31390 . . . 4  |- mPreSt  =  ( t  e.  _V  |->  ( ( { d  e. 
~P (mDV `  t
)  |  `' d  =  d }  X.  ( ~P (mEx `  t
)  i^i  Fin )
)  X.  (mEx `  t ) ) )
15 fvex 6201 . . . . . . . . 9  |-  (mDV `  T )  e.  _V
163, 15eqeltri 2697 . . . . . . . 8  |-  V  e. 
_V
1716pwex 4848 . . . . . . 7  |-  ~P V  e.  _V
1817rabex 4813 . . . . . 6  |-  { d  e.  ~P V  |  `' d  =  d }  e.  _V
19 fvex 6201 . . . . . . . . 9  |-  (mEx `  T )  e.  _V
208, 19eqeltri 2697 . . . . . . . 8  |-  E  e. 
_V
2120pwex 4848 . . . . . . 7  |-  ~P E  e.  _V
2221inex1 4799 . . . . . 6  |-  ( ~P E  i^i  Fin )  e.  _V
2318, 22xpex 6962 . . . . 5  |-  ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  e. 
_V
2423, 20xpex 6962 . . . 4  |-  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
)  e.  _V
2513, 14, 24fvmpt 6282 . . 3  |-  ( T  e.  _V  ->  (mPreSt `  T )  =  ( ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
) )
26 xp0 5552 . . . . 5  |-  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  (/) )  =  (/)
2726eqcomi 2631 . . . 4  |-  (/)  =  ( ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  (/) )
28 fvprc 6185 . . . 4  |-  ( -.  T  e.  _V  ->  (mPreSt `  T )  =  (/) )
29 fvprc 6185 . . . . . 6  |-  ( -.  T  e.  _V  ->  (mEx
`  T )  =  (/) )
308, 29syl5eq 2668 . . . . 5  |-  ( -.  T  e.  _V  ->  E  =  (/) )
3130xpeq2d 5139 . . . 4  |-  ( -.  T  e.  _V  ->  ( ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
)  =  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  (/) ) )
3227, 28, 313eqtr4a 2682 . . 3  |-  ( -.  T  e.  _V  ->  (mPreSt `  T )  =  ( ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
) )
3325, 32pm2.61i 176 . 2  |-  (mPreSt `  T )  =  ( ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
)
341, 33eqtri 2644 1  |-  P  =  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ~Pcpw 4158    X. cxp 5112   `'ccnv 5113   ` cfv 5888   Fincfn 7955  mExcmex 31364  mDVcmdv 31365  mPreStcmpst 31370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mpst 31390
This theorem is referenced by:  elmpst  31433  mpstssv  31436
  Copyright terms: Public domain W3C validator