| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstval | Structured version Visualization version Unicode version | ||
| Description: A pre-statement is an ordered triple, whose first member is a symmetric set of dv conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstval.v |
|
| mpstval.e |
|
| mpstval.p |
|
| Ref | Expression |
|---|---|
| mpstval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpstval.p |
. 2
| |
| 2 | fveq2 6191 |
. . . . . . . . 9
| |
| 3 | mpstval.v |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . . . 8
|
| 5 | 4 | pweqd 4163 |
. . . . . . 7
|
| 6 | 5 | rabeqdv 3194 |
. . . . . 6
|
| 7 | fveq2 6191 |
. . . . . . . . 9
| |
| 8 | mpstval.e |
. . . . . . . . 9
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . 8
|
| 10 | 9 | pweqd 4163 |
. . . . . . 7
|
| 11 | 10 | ineq1d 3813 |
. . . . . 6
|
| 12 | 6, 11 | xpeq12d 5140 |
. . . . 5
|
| 13 | 12, 9 | xpeq12d 5140 |
. . . 4
|
| 14 | df-mpst 31390 |
. . . 4
| |
| 15 | fvex 6201 |
. . . . . . . . 9
| |
| 16 | 3, 15 | eqeltri 2697 |
. . . . . . . 8
|
| 17 | 16 | pwex 4848 |
. . . . . . 7
|
| 18 | 17 | rabex 4813 |
. . . . . 6
|
| 19 | fvex 6201 |
. . . . . . . . 9
| |
| 20 | 8, 19 | eqeltri 2697 |
. . . . . . . 8
|
| 21 | 20 | pwex 4848 |
. . . . . . 7
|
| 22 | 21 | inex1 4799 |
. . . . . 6
|
| 23 | 18, 22 | xpex 6962 |
. . . . 5
|
| 24 | 23, 20 | xpex 6962 |
. . . 4
|
| 25 | 13, 14, 24 | fvmpt 6282 |
. . 3
|
| 26 | xp0 5552 |
. . . . 5
| |
| 27 | 26 | eqcomi 2631 |
. . . 4
|
| 28 | fvprc 6185 |
. . . 4
| |
| 29 | fvprc 6185 |
. . . . . 6
| |
| 30 | 8, 29 | syl5eq 2668 |
. . . . 5
|
| 31 | 30 | xpeq2d 5139 |
. . . 4
|
| 32 | 27, 28, 31 | 3eqtr4a 2682 |
. . 3
|
| 33 | 25, 32 | pm2.61i 176 |
. 2
|
| 34 | 1, 33 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-mpst 31390 |
| This theorem is referenced by: elmpst 31433 mpstssv 31436 |
| Copyright terms: Public domain | W3C validator |