MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpt2opabovd Structured version   Visualization version   GIF version

Theorem mptmpt2opabovd 7249
Description: The operation value of a function value of a collection of ordered pairs of related elements (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
mptmpt2opabbrd.g (𝜑𝐺𝑊)
mptmpt2opabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpt2opabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpt2opabbrd.v (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
mptmpt2opabbrd.r ((𝜑𝑓(𝐷𝐺)) → 𝜓)
mptmpt2opabovd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpt2opabovd (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑔   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝐶,𝑎,𝑏,𝑔
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜓(𝑓,𝑔,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝐶(𝑓,)   𝐷(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑉(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpt2opabovd
StepHypRef Expression
1 mptmpt2opabbrd.g . 2 (𝜑𝐺𝑊)
2 mptmpt2opabbrd.x . 2 (𝜑𝑋 ∈ (𝐴𝐺))
3 mptmpt2opabbrd.y . 2 (𝜑𝑌 ∈ (𝐵𝐺))
4 mptmpt2opabbrd.v . 2 (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
5 mptmpt2opabbrd.r . 2 ((𝜑𝑓(𝐷𝐺)) → 𝜓)
6 oveq12 6659 . . 3 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑎(𝐶𝐺)𝑏) = (𝑋(𝐶𝐺)𝑌))
76breqd 4664 . 2 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑓(𝑎(𝐶𝐺)𝑏)𝑓(𝑋(𝐶𝐺)𝑌)))
8 fveq2 6191 . . . 4 (𝑔 = 𝐺 → (𝐶𝑔) = (𝐶𝐺))
98oveqd 6667 . . 3 (𝑔 = 𝐺 → (𝑎(𝐶𝑔)𝑏) = (𝑎(𝐶𝐺)𝑏))
109breqd 4664 . 2 (𝑔 = 𝐺 → (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝑎(𝐶𝐺)𝑏)))
11 mptmpt2opabovd.m . 2 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
121, 2, 3, 4, 5, 7, 10, 11mptmpt2opabbrd 7248 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  {copab 4712  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  wksonproplem  26601  trlsonfval  26602  pthsonfval  26636  spthson  26637
  Copyright terms: Public domain W3C validator