MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpt2opabovd Structured version   Visualization version   Unicode version

Theorem mptmpt2opabovd 7249
Description: The operation value of a function value of a collection of ordered pairs of related elements (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
mptmpt2opabbrd.g  |-  ( ph  ->  G  e.  W )
mptmpt2opabbrd.x  |-  ( ph  ->  X  e.  ( A `
 G ) )
mptmpt2opabbrd.y  |-  ( ph  ->  Y  e.  ( B `
 G ) )
mptmpt2opabbrd.v  |-  ( ph  ->  { <. f ,  h >.  |  ps }  e.  V )
mptmpt2opabbrd.r  |-  ( (
ph  /\  f ( D `  G )
h )  ->  ps )
mptmpt2opabovd.m  |-  M  =  ( g  e.  _V  |->  ( a  e.  ( A `  g ) ,  b  e.  ( B `  g ) 
|->  { <. f ,  h >.  |  ( f ( a ( C `  g ) b ) h  /\  f ( D `  g ) h ) } ) )
Assertion
Ref Expression
mptmpt2opabovd  |-  ( ph  ->  ( X ( M `
 G ) Y )  =  { <. f ,  h >.  |  ( f ( X ( C `  G ) Y ) h  /\  f ( D `  G ) h ) } )
Distinct variable groups:    A, a,
b, g    B, a,
b, g    D, a,
b, g    G, a,
b, f, g, h   
g, W    X, a,
b, f, g, h    Y, a, b, f, g, h    ph, f, h    C, a, b, g
Allowed substitution hints:    ph( g, a, b)    ps( f, g, h, a, b)    A( f, h)    B( f, h)    C( f, h)    D( f, h)    M( f, g, h, a, b)    V( f, g, h, a, b)    W( f, h, a, b)

Proof of Theorem mptmpt2opabovd
StepHypRef Expression
1 mptmpt2opabbrd.g . 2  |-  ( ph  ->  G  e.  W )
2 mptmpt2opabbrd.x . 2  |-  ( ph  ->  X  e.  ( A `
 G ) )
3 mptmpt2opabbrd.y . 2  |-  ( ph  ->  Y  e.  ( B `
 G ) )
4 mptmpt2opabbrd.v . 2  |-  ( ph  ->  { <. f ,  h >.  |  ps }  e.  V )
5 mptmpt2opabbrd.r . 2  |-  ( (
ph  /\  f ( D `  G )
h )  ->  ps )
6 oveq12 6659 . . 3  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( a ( C `
 G ) b )  =  ( X ( C `  G
) Y ) )
76breqd 4664 . 2  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( f ( a ( C `  G
) b ) h  <-> 
f ( X ( C `  G ) Y ) h ) )
8 fveq2 6191 . . . 4  |-  ( g  =  G  ->  ( C `  g )  =  ( C `  G ) )
98oveqd 6667 . . 3  |-  ( g  =  G  ->  (
a ( C `  g ) b )  =  ( a ( C `  G ) b ) )
109breqd 4664 . 2  |-  ( g  =  G  ->  (
f ( a ( C `  g ) b ) h  <->  f (
a ( C `  G ) b ) h ) )
11 mptmpt2opabovd.m . 2  |-  M  =  ( g  e.  _V  |->  ( a  e.  ( A `  g ) ,  b  e.  ( B `  g ) 
|->  { <. f ,  h >.  |  ( f ( a ( C `  g ) b ) h  /\  f ( D `  g ) h ) } ) )
121, 2, 3, 4, 5, 7, 10, 11mptmpt2opabbrd 7248 1  |-  ( ph  ->  ( X ( M `
 G ) Y )  =  { <. f ,  h >.  |  ( f ( X ( C `  G ) Y ) h  /\  f ( D `  G ) h ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  wksonproplem  26601  trlsonfval  26602  pthsonfval  26636  spthson  26637
  Copyright terms: Public domain W3C validator