| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcun | Structured version Visualization version Unicode version | ||
| Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f |
|
| Ref | Expression |
|---|---|
| mrcun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . 3
| |
| 2 | mre1cl 16254 |
. . . . . . 7
| |
| 3 | elpw2g 4827 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 17 |
. . . . . 6
|
| 5 | 4 | biimpar 502 |
. . . . 5
|
| 6 | 5 | 3adant3 1081 |
. . . 4
|
| 7 | elpw2g 4827 |
. . . . . . 7
| |
| 8 | 2, 7 | syl 17 |
. . . . . 6
|
| 9 | 8 | biimpar 502 |
. . . . 5
|
| 10 | 9 | 3adant2 1080 |
. . . 4
|
| 11 | prssi 4353 |
. . . 4
| |
| 12 | 6, 10, 11 | syl2anc 693 |
. . 3
|
| 13 | mrcfval.f |
. . . 4
| |
| 14 | 13 | mrcuni 16281 |
. . 3
|
| 15 | 1, 12, 14 | syl2anc 693 |
. 2
|
| 16 | uniprg 4450 |
. . . 4
| |
| 17 | 6, 10, 16 | syl2anc 693 |
. . 3
|
| 18 | 17 | fveq2d 6195 |
. 2
|
| 19 | 13 | mrcf 16269 |
. . . . . . . 8
|
| 20 | ffn 6045 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
|
| 22 | 21 | 3ad2ant1 1082 |
. . . . . 6
|
| 23 | fnimapr 6262 |
. . . . . 6
| |
| 24 | 22, 6, 10, 23 | syl3anc 1326 |
. . . . 5
|
| 25 | 24 | unieqd 4446 |
. . . 4
|
| 26 | fvex 6201 |
. . . . 5
| |
| 27 | fvex 6201 |
. . . . 5
| |
| 28 | 26, 27 | unipr 4449 |
. . . 4
|
| 29 | 25, 28 | syl6eq 2672 |
. . 3
|
| 30 | 29 | fveq2d 6195 |
. 2
|
| 31 | 15, 18, 30 | 3eqtr3d 2664 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-mre 16246 df-mrc 16247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |