Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrval Structured version   Visualization version   GIF version

Theorem msrval 31435
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
msrval.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
msrval (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)

Proof of Theorem msrval
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msrfval.v . . . 4 𝑉 = (mVars‘𝑇)
2 msrfval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 msrfval.r . . . 4 𝑅 = (mStRed‘𝑇)
41, 2, 3msrfval 31434 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
54a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
6 fvexd 6203 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) ∈ V)
7 fvexd 6203 . . . 4 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) ∈ V)
8 simpllr 799 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑠 = ⟨𝐷, 𝐻, 𝐴⟩)
98fveq2d 6195 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st𝑠) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
109fveq2d 6195 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
11 eqid 2622 . . . . . . . . . . . . 13 (mDV‘𝑇) = (mDV‘𝑇)
12 eqid 2622 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
1311, 12, 2elmpst 31433 . . . . . . . . . . . 12 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1413simp1bi 1076 . . . . . . . . . . 11 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷))
1514simpld 475 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (mDV‘𝑇))
1615ad3antrrr 766 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ⊆ (mDV‘𝑇))
17 fvex 6201 . . . . . . . . . 10 (mDV‘𝑇) ∈ V
1817ssex 4802 . . . . . . . . 9 (𝐷 ⊆ (mDV‘𝑇) → 𝐷 ∈ V)
1916, 18syl 17 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ∈ V)
2013simp2bi 1077 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
2120simprd 479 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐻 ∈ Fin)
2221ad3antrrr 766 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐻 ∈ Fin)
2313simp3bi 1078 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (mEx‘𝑇))
2423ad3antrrr 766 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐴 ∈ (mEx‘𝑇))
25 ot1stg 7182 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2619, 22, 24, 25syl3anc 1326 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2710, 26eqtrd 2656 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = 𝐷)
28 fvex 6201 . . . . . . . . . . 11 (mVars‘𝑇) ∈ V
291, 28eqeltri 2697 . . . . . . . . . 10 𝑉 ∈ V
30 imaexg 7103 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 “ ( ∪ {𝑎})) ∈ V)
3129, 30ax-mp 5 . . . . . . . . 9 (𝑉 “ ( ∪ {𝑎})) ∈ V
3231uniex 6953 . . . . . . . 8 (𝑉 “ ( ∪ {𝑎})) ∈ V
3332a1i 11 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) ∈ V)
34 id 22 . . . . . . . . 9 (𝑧 = (𝑉 “ ( ∪ {𝑎})) → 𝑧 = (𝑉 “ ( ∪ {𝑎})))
35 simplr 792 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = (2nd ‘(1st𝑠)))
369fveq2d 6195 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st𝑠)) = (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
37 ot2ndg 7183 . . . . . . . . . . . . . . 15 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3819, 22, 24, 37syl3anc 1326 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3935, 36, 383eqtrd 2660 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = 𝐻)
40 simpr 477 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = (2nd𝑠))
418fveq2d 6195 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd𝑠) = (2nd ‘⟨𝐷, 𝐻, 𝐴⟩))
42 ot3rdg 7184 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (mEx‘𝑇) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4324, 42syl 17 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4440, 41, 433eqtrd 2660 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = 𝐴)
4544sneqd 4189 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → {𝑎} = {𝐴})
4639, 45uneq12d 3768 . . . . . . . . . . . 12 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ( ∪ {𝑎}) = (𝐻 ∪ {𝐴}))
4746imaeq2d 5466 . . . . . . . . . . 11 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
4847unieqd 4446 . . . . . . . . . 10 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
49 msrval.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
5048, 49syl6eqr 2674 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = 𝑍)
5134, 50sylan9eqr 2678 . . . . . . . 8 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → 𝑧 = 𝑍)
5251sqxpeqd 5141 . . . . . . 7 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → (𝑧 × 𝑧) = (𝑍 × 𝑍))
5333, 52csbied 3560 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑍 × 𝑍))
5427, 53ineq12d 3815 . . . . 5 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = (𝐷 ∩ (𝑍 × 𝑍)))
5554, 39, 44oteq123d 4417 . . . 4 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
567, 55csbied 3560 . . 3 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
576, 56csbied 3560 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
58 id 22 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
59 otex 4933 . . 3 ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V
6059a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V)
615, 57, 58, 60fvmptd 6288 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  cun 3572  cin 3573  wss 3574  {csn 4177  cotp 4185   cuni 4436  cmpt 4729   × cxp 5112  ccnv 5113  cima 5117  cfv 5888  1st c1st 7166  2nd c2nd 7167  Fincfn 7955  mExcmex 31364  mDVcmdv 31365  mVarscmvrs 31366  mPreStcmpst 31370  mStRedcmsr 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-mpst 31390  df-msr 31391
This theorem is referenced by:  msrf  31439  msrid  31442  elmsta  31445  mthmpps  31479
  Copyright terms: Public domain W3C validator