| Step | Hyp | Ref
| Expression |
| 1 | | mthmpps.m |
. . . . . . . 8
⊢ 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) |
| 2 | | mthmpps.u |
. . . . . . . . . . . . . 14
⊢ 𝑈 = (mThm‘𝑇) |
| 3 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(mPreSt‘𝑇) =
(mPreSt‘𝑇) |
| 4 | 2, 3 | mthmsta 31475 |
. . . . . . . . . . . . 13
⊢ 𝑈 ⊆ (mPreSt‘𝑇) |
| 5 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) |
| 6 | 4, 5 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 〈𝐶, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇)) |
| 7 | | mthmpps.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = (mDV‘𝑇) |
| 8 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(mEx‘𝑇) =
(mEx‘𝑇) |
| 9 | 7, 8, 3 | elmpst 31433 |
. . . . . . . . . . . 12
⊢
(〈𝐶, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) ↔ ((𝐶 ⊆ 𝐷 ∧ ◡𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇))) |
| 10 | 6, 9 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → ((𝐶 ⊆ 𝐷 ∧ ◡𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇))) |
| 11 | 10 | simp1d 1073 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝐶 ⊆ 𝐷 ∧ ◡𝐶 = 𝐶)) |
| 12 | 11 | simpld 475 |
. . . . . . . . 9
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 𝐶 ⊆ 𝐷) |
| 13 | | difssd 3738 |
. . . . . . . . 9
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) ⊆ 𝐷) |
| 14 | 12, 13 | unssd 3789 |
. . . . . . . 8
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⊆ 𝐷) |
| 15 | 1, 14 | syl5eqss 3649 |
. . . . . . 7
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 𝑀 ⊆ 𝐷) |
| 16 | 11 | simprd 479 |
. . . . . . . . 9
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → ◡𝐶 = 𝐶) |
| 17 | | cnvdif 5539 |
. . . . . . . . . . 11
⊢ ◡(𝐷 ∖ (𝑍 × 𝑍)) = (◡𝐷 ∖ ◡(𝑍 × 𝑍)) |
| 18 | | cnvdif 5539 |
. . . . . . . . . . . . . 14
⊢ ◡(((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (◡((mVR‘𝑇) × (mVR‘𝑇)) ∖ ◡ I ) |
| 19 | | cnvxp 5551 |
. . . . . . . . . . . . . . 15
⊢ ◡((mVR‘𝑇) × (mVR‘𝑇)) = ((mVR‘𝑇) × (mVR‘𝑇)) |
| 20 | | cnvi 5537 |
. . . . . . . . . . . . . . 15
⊢ ◡ I = I |
| 21 | 19, 20 | difeq12i 3726 |
. . . . . . . . . . . . . 14
⊢ (◡((mVR‘𝑇) × (mVR‘𝑇)) ∖ ◡ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) |
| 22 | 18, 21 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ ◡(((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) |
| 23 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(mVR‘𝑇) =
(mVR‘𝑇) |
| 24 | 23, 7 | mdvval 31401 |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) |
| 25 | 24 | cnveqi 5297 |
. . . . . . . . . . . . 13
⊢ ◡𝐷 = ◡(((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) |
| 26 | 22, 25, 24 | 3eqtr4i 2654 |
. . . . . . . . . . . 12
⊢ ◡𝐷 = 𝐷 |
| 27 | | cnvxp 5551 |
. . . . . . . . . . . 12
⊢ ◡(𝑍 × 𝑍) = (𝑍 × 𝑍) |
| 28 | 26, 27 | difeq12i 3726 |
. . . . . . . . . . 11
⊢ (◡𝐷 ∖ ◡(𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍)) |
| 29 | 17, 28 | eqtri 2644 |
. . . . . . . . . 10
⊢ ◡(𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍)) |
| 30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → ◡(𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))) |
| 31 | 16, 30 | uneq12d 3768 |
. . . . . . . 8
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (◡𝐶 ∪ ◡(𝐷 ∖ (𝑍 × 𝑍))) = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))) |
| 32 | 1 | cnveqi 5297 |
. . . . . . . . 9
⊢ ◡𝑀 = ◡(𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) |
| 33 | | cnvun 5538 |
. . . . . . . . 9
⊢ ◡(𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) = (◡𝐶 ∪ ◡(𝐷 ∖ (𝑍 × 𝑍))) |
| 34 | 32, 33 | eqtri 2644 |
. . . . . . . 8
⊢ ◡𝑀 = (◡𝐶 ∪ ◡(𝐷 ∖ (𝑍 × 𝑍))) |
| 35 | 31, 34, 1 | 3eqtr4g 2681 |
. . . . . . 7
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → ◡𝑀 = 𝑀) |
| 36 | 15, 35 | jca 554 |
. . . . . 6
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀)) |
| 37 | 10 | simp2d 1074 |
. . . . . 6
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin)) |
| 38 | 10 | simp3d 1075 |
. . . . . 6
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 𝐴 ∈ (mEx‘𝑇)) |
| 39 | 7, 8, 3 | elmpst 31433 |
. . . . . 6
⊢
(〈𝑀, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) ↔ ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇))) |
| 40 | 36, 37, 38, 39 | syl3anbrc 1246 |
. . . . 5
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 〈𝑀, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇)) |
| 41 | | mthmpps.r |
. . . . . . . 8
⊢ 𝑅 = (mStRed‘𝑇) |
| 42 | | mthmpps.j |
. . . . . . . 8
⊢ 𝐽 = (mPPSt‘𝑇) |
| 43 | 41, 42, 2 | elmthm 31473 |
. . . . . . 7
⊢
(〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)) |
| 44 | 5, 43 | sylib 208 |
. . . . . 6
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)) |
| 45 | | eqid 2622 |
. . . . . . . 8
⊢
(mCls‘𝑇) =
(mCls‘𝑇) |
| 46 | | simpll 790 |
. . . . . . . 8
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝑇 ∈ mFS) |
| 47 | 15 | adantr 481 |
. . . . . . . 8
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝑀 ⊆ 𝐷) |
| 48 | 37 | simpld 475 |
. . . . . . . . 9
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 𝐻 ⊆ (mEx‘𝑇)) |
| 49 | 48 | adantr 481 |
. . . . . . . 8
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝐻 ⊆ (mEx‘𝑇)) |
| 50 | 3, 42 | mppspst 31471 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 ⊆ (mPreSt‘𝑇) |
| 51 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝑥 ∈ 𝐽) |
| 52 | 50, 51 | sseldi 3601 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝑥 ∈ (mPreSt‘𝑇)) |
| 53 | 3 | mpst123 31437 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (mPreSt‘𝑇) → 𝑥 = 〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝑥 = 〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝑅‘𝑥) = (𝑅‘〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉)) |
| 56 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)) |
| 57 | 55, 56 | eqtr3d 2658 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝑅‘〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)) |
| 58 | 54, 52 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉 ∈
(mPreSt‘𝑇)) |
| 59 | | mthmpps.v |
. . . . . . . . . . . . . . . . 17
⊢ 𝑉 = (mVars‘𝑇) |
| 60 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) = ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) |
| 61 | 59, 3, 41, 60 | msrval 31435 |
. . . . . . . . . . . . . . . 16
⊢
(〈(1st ‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉 ∈
(mPreSt‘𝑇) →
(𝑅‘〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉) =
〈((1st ‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))), (2nd
‘(1st ‘𝑥)), (2nd ‘𝑥)〉) |
| 62 | 58, 61 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝑅‘〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉) =
〈((1st ‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))), (2nd
‘(1st ‘𝑥)), (2nd ‘𝑥)〉) |
| 63 | | mthmpps.z |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑍 = ∪
(𝑉 “ (𝐻 ∪ {𝐴})) |
| 64 | 59, 3, 41, 63 | msrval 31435 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝐶, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) → (𝑅‘〈𝐶, 𝐻, 𝐴〉) = 〈(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 65 | 6, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝑅‘〈𝐶, 𝐻, 𝐴〉) = 〈(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 66 | 65 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝑅‘〈𝐶, 𝐻, 𝐴〉) = 〈(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 67 | 57, 62, 66 | 3eqtr3d 2664 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 〈((1st
‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))), (2nd
‘(1st ‘𝑥)), (2nd ‘𝑥)〉 = 〈(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 68 | | fvex 6201 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘(1st ‘𝑥)) ∈ V |
| 69 | 68 | inex1 4799 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))) ∈ V |
| 70 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(2nd ‘(1st ‘𝑥)) ∈ V |
| 71 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(2nd ‘𝑥) ∈ V |
| 72 | 69, 70, 71 | otth 4953 |
. . . . . . . . . . . . . 14
⊢
(〈((1st ‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))), (2nd
‘(1st ‘𝑥)), (2nd ‘𝑥)〉 = 〈(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉 ↔ (((1st
‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd
‘(1st ‘𝑥)) = 𝐻 ∧ (2nd ‘𝑥) = 𝐴)) |
| 73 | 67, 72 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (((1st
‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd
‘(1st ‘𝑥)) = 𝐻 ∧ (2nd ‘𝑥) = 𝐴)) |
| 74 | 73 | simp1d 1073 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ((1st
‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍))) |
| 75 | 73 | simp2d 1074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (2nd
‘(1st ‘𝑥)) = 𝐻) |
| 76 | 73 | simp3d 1075 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (2nd
‘𝑥) = 𝐴) |
| 77 | 76 | sneqd 4189 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → {(2nd
‘𝑥)} = {𝐴}) |
| 78 | 75, 77 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)}) = (𝐻 ∪ {𝐴})) |
| 79 | 78 | imaeq2d 5466 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴}))) |
| 80 | 79 | unieqd 4446 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) = ∪ (𝑉
“ (𝐻 ∪ {𝐴}))) |
| 81 | 80, 63 | syl6eqr 2674 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) = 𝑍) |
| 82 | 81 | sqxpeqd 5141 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)}))) = (𝑍 × 𝑍)) |
| 83 | 82 | ineq2d 3814 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ((1st
‘(1st ‘𝑥)) ∩ (∪ (𝑉 “ ((2nd
‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})) × ∪ (𝑉
“ ((2nd ‘(1st ‘𝑥)) ∪ {(2nd ‘𝑥)})))) = ((1st
‘(1st ‘𝑥)) ∩ (𝑍 × 𝑍))) |
| 84 | 74, 83 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (𝐶 ∩ (𝑍 × 𝑍)) = ((1st ‘(1st
‘𝑥)) ∩ (𝑍 × 𝑍))) |
| 85 | | inss1 3833 |
. . . . . . . . . . 11
⊢ (𝐶 ∩ (𝑍 × 𝑍)) ⊆ 𝐶 |
| 86 | 84, 85 | syl6eqssr 3656 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ((1st
‘(1st ‘𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶) |
| 87 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (1st
‘(1st ‘𝑥)) = (1st ‘(1st
‘𝑥))) |
| 88 | 87, 75, 76 | oteq123d 4417 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 〈(1st
‘(1st ‘𝑥)), (2nd ‘(1st
‘𝑥)), (2nd
‘𝑥)〉 =
〈(1st ‘(1st ‘𝑥)), 𝐻, 𝐴〉) |
| 89 | 54, 88 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝑥 = 〈(1st
‘(1st ‘𝑥)), 𝐻, 𝐴〉) |
| 90 | 89, 52 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 〈(1st
‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇)) |
| 91 | 7, 8, 3 | elmpst 31433 |
. . . . . . . . . . . . . 14
⊢
(〈(1st ‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) ↔ (((1st
‘(1st ‘𝑥)) ⊆ 𝐷 ∧ ◡(1st ‘(1st
‘𝑥)) =
(1st ‘(1st ‘𝑥))) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇))) |
| 92 | 91 | simp1bi 1076 |
. . . . . . . . . . . . 13
⊢
(〈(1st ‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) → ((1st
‘(1st ‘𝑥)) ⊆ 𝐷 ∧ ◡(1st ‘(1st
‘𝑥)) =
(1st ‘(1st ‘𝑥)))) |
| 93 | 92 | simpld 475 |
. . . . . . . . . . . 12
⊢
(〈(1st ‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) → (1st
‘(1st ‘𝑥)) ⊆ 𝐷) |
| 94 | 90, 93 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (1st
‘(1st ‘𝑥)) ⊆ 𝐷) |
| 95 | 94 | ssdifd 3746 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ((1st
‘(1st ‘𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍))) |
| 96 | | unss12 3785 |
. . . . . . . . . 10
⊢
((((1st ‘(1st ‘𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶 ∧ ((1st
‘(1st ‘𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍))) → (((1st
‘(1st ‘𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st
‘(1st ‘𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))) |
| 97 | 86, 95, 96 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (((1st
‘(1st ‘𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st
‘(1st ‘𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))) |
| 98 | | inundif 4046 |
. . . . . . . . . 10
⊢
(((1st ‘(1st ‘𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st
‘(1st ‘𝑥)) ∖ (𝑍 × 𝑍))) = (1st ‘(1st
‘𝑥)) |
| 99 | 98 | eqcomi 2631 |
. . . . . . . . 9
⊢
(1st ‘(1st ‘𝑥)) = (((1st ‘(1st
‘𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st
‘(1st ‘𝑥)) ∖ (𝑍 × 𝑍))) |
| 100 | 97, 99, 1 | 3sstr4g 3646 |
. . . . . . . 8
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → (1st
‘(1st ‘𝑥)) ⊆ 𝑀) |
| 101 | | ssid 3624 |
. . . . . . . . 9
⊢ 𝐻 ⊆ 𝐻 |
| 102 | 101 | a1i 11 |
. . . . . . . 8
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝐻 ⊆ 𝐻) |
| 103 | 7, 8, 45, 46, 47, 49, 100, 102 | ss2mcls 31465 |
. . . . . . 7
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → ((1st
‘(1st ‘𝑥))(mCls‘𝑇)𝐻) ⊆ (𝑀(mCls‘𝑇)𝐻)) |
| 104 | 89, 51 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 〈(1st
‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ 𝐽) |
| 105 | 3, 42, 45 | elmpps 31470 |
. . . . . . . . 9
⊢
(〈(1st ‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ 𝐽 ↔ (〈(1st
‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ ((1st
‘(1st ‘𝑥))(mCls‘𝑇)𝐻))) |
| 106 | 105 | simprbi 480 |
. . . . . . . 8
⊢
(〈(1st ‘(1st ‘𝑥)), 𝐻, 𝐴〉 ∈ 𝐽 → 𝐴 ∈ ((1st
‘(1st ‘𝑥))(mCls‘𝑇)𝐻)) |
| 107 | 104, 106 | syl 17 |
. . . . . . 7
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝐴 ∈ ((1st
‘(1st ‘𝑥))(mCls‘𝑇)𝐻)) |
| 108 | 103, 107 | sseldd 3604 |
. . . . . 6
⊢ (((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) ∧ (𝑥 ∈ 𝐽 ∧ (𝑅‘𝑥) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻)) |
| 109 | 44, 108 | rexlimddv 3035 |
. . . . 5
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻)) |
| 110 | 3, 42, 45 | elmpps 31470 |
. . . . 5
⊢
(〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ↔ (〈𝑀, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))) |
| 111 | 40, 109, 110 | sylanbrc 698 |
. . . 4
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽) |
| 112 | 1 | ineq1i 3810 |
. . . . . . . 8
⊢ (𝑀 ∩ (𝑍 × 𝑍)) = ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍)) |
| 113 | | indir 3875 |
. . . . . . . 8
⊢ ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍)) = ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) |
| 114 | | incom 3805 |
. . . . . . . . . . 11
⊢ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ((𝑍 × 𝑍) ∩ (𝐷 ∖ (𝑍 × 𝑍))) |
| 115 | | disjdif 4040 |
. . . . . . . . . . 11
⊢ ((𝑍 × 𝑍) ∩ (𝐷 ∖ (𝑍 × 𝑍))) = ∅ |
| 116 | 114, 115 | eqtri 2644 |
. . . . . . . . . 10
⊢ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ∅ |
| 117 | | 0ss 3972 |
. . . . . . . . . 10
⊢ ∅
⊆ (𝐶 ∩ (𝑍 × 𝑍)) |
| 118 | 116, 117 | eqsstri 3635 |
. . . . . . . . 9
⊢ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍)) |
| 119 | | ssequn2 3786 |
. . . . . . . . 9
⊢ (((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍)) ↔ ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍))) |
| 120 | 118, 119 | mpbi 220 |
. . . . . . . 8
⊢ ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍)) |
| 121 | 112, 113,
120 | 3eqtri 2648 |
. . . . . . 7
⊢ (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍)) |
| 122 | 121 | a1i 11 |
. . . . . 6
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍))) |
| 123 | 122 | oteq1d 4414 |
. . . . 5
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → 〈(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉 = 〈(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 124 | 59, 3, 41, 63 | msrval 31435 |
. . . . . 6
⊢
(〈𝑀, 𝐻, 𝐴〉 ∈ (mPreSt‘𝑇) → (𝑅‘〈𝑀, 𝐻, 𝐴〉) = 〈(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 125 | 40, 124 | syl 17 |
. . . . 5
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝑅‘〈𝑀, 𝐻, 𝐴〉) = 〈(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 126 | 123, 125,
65 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)) |
| 127 | 111, 126 | jca 554 |
. . 3
⊢ ((𝑇 ∈ mFS ∧ 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) → (〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉))) |
| 128 | 127 | ex 450 |
. 2
⊢ (𝑇 ∈ mFS → (〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈 → (〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)))) |
| 129 | 41, 42, 2 | mthmi 31474 |
. 2
⊢
((〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)) → 〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈) |
| 130 | 128, 129 | impbid1 215 |
1
⊢ (𝑇 ∈ mFS → (〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈 ↔ (〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)))) |