Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrval Structured version   Visualization version   Unicode version

Theorem msrval 31435
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v  |-  V  =  (mVars `  T )
msrfval.p  |-  P  =  (mPreSt `  T )
msrfval.r  |-  R  =  (mStRed `  T )
msrval.z  |-  Z  = 
U. ( V "
( H  u.  { A } ) )
Assertion
Ref Expression
msrval  |-  ( <. D ,  H ,  A >.  e.  P  -> 
( R `  <. D ,  H ,  A >. )  =  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. )

Proof of Theorem msrval
Dummy variables  h  a  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msrfval.v . . . 4  |-  V  =  (mVars `  T )
2 msrfval.p . . . 4  |-  P  =  (mPreSt `  T )
3 msrfval.r . . . 4  |-  R  =  (mStRed `  T )
41, 2, 3msrfval 31434 . . 3  |-  R  =  ( s  e.  P  |-> 
[_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
54a1i 11 . 2  |-  ( <. D ,  H ,  A >.  e.  P  ->  R  =  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
)
6 fvexd 6203 . . 3  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  s  =  <. D ,  H ,  A >. )  ->  ( 2nd `  ( 1st `  s ) )  e.  _V )
7 fvexd 6203 . . . 4  |-  ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  =  <. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  ->  ( 2nd `  s )  e.  _V )
8 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  s  =  <. D ,  H ,  A >. )
98fveq2d 6195 . . . . . . . 8  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 1st `  s )  =  ( 1st `  <. D ,  H ,  A >. ) )
109fveq2d 6195 . . . . . . 7  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 1st `  ( 1st `  s
) )  =  ( 1st `  ( 1st `  <. D ,  H ,  A >. ) ) )
11 eqid 2622 . . . . . . . . . . . . 13  |-  (mDV `  T )  =  (mDV
`  T )
12 eqid 2622 . . . . . . . . . . . . 13  |-  (mEx `  T )  =  (mEx
`  T )
1311, 12, 2elmpst 31433 . . . . . . . . . . . 12  |-  ( <. D ,  H ,  A >.  e.  P  <->  ( ( D  C_  (mDV `  T
)  /\  `' D  =  D )  /\  ( H  C_  (mEx `  T
)  /\  H  e.  Fin )  /\  A  e.  (mEx `  T )
) )
1413simp1bi 1076 . . . . . . . . . . 11  |-  ( <. D ,  H ,  A >.  e.  P  -> 
( D  C_  (mDV `  T )  /\  `' D  =  D )
)
1514simpld 475 . . . . . . . . . 10  |-  ( <. D ,  H ,  A >.  e.  P  ->  D  C_  (mDV `  T
) )
1615ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  D  C_  (mDV `  T )
)
17 fvex 6201 . . . . . . . . . 10  |-  (mDV `  T )  e.  _V
1817ssex 4802 . . . . . . . . 9  |-  ( D 
C_  (mDV `  T
)  ->  D  e.  _V )
1916, 18syl 17 . . . . . . . 8  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  D  e.  _V )
2013simp2bi 1077 . . . . . . . . . 10  |-  ( <. D ,  H ,  A >.  e.  P  -> 
( H  C_  (mEx `  T )  /\  H  e.  Fin ) )
2120simprd 479 . . . . . . . . 9  |-  ( <. D ,  H ,  A >.  e.  P  ->  H  e.  Fin )
2221ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  H  e.  Fin )
2313simp3bi 1078 . . . . . . . . 9  |-  ( <. D ,  H ,  A >.  e.  P  ->  A  e.  (mEx `  T
) )
2423ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  A  e.  (mEx `  T )
)
25 ot1stg 7182 . . . . . . . 8  |-  ( ( D  e.  _V  /\  H  e.  Fin  /\  A  e.  (mEx `  T )
)  ->  ( 1st `  ( 1st `  <. D ,  H ,  A >. ) )  =  D )
2619, 22, 24, 25syl3anc 1326 . . . . . . 7  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 1st `  ( 1st `  <. D ,  H ,  A >. ) )  =  D )
2710, 26eqtrd 2656 . . . . . 6  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 1st `  ( 1st `  s
) )  =  D )
28 fvex 6201 . . . . . . . . . . 11  |-  (mVars `  T )  e.  _V
291, 28eqeltri 2697 . . . . . . . . . 10  |-  V  e. 
_V
30 imaexg 7103 . . . . . . . . . 10  |-  ( V  e.  _V  ->  ( V " ( h  u. 
{ a } ) )  e.  _V )
3129, 30ax-mp 5 . . . . . . . . 9  |-  ( V
" ( h  u. 
{ a } ) )  e.  _V
3231uniex 6953 . . . . . . . 8  |-  U. ( V " ( h  u. 
{ a } ) )  e.  _V
3332a1i 11 . . . . . . 7  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  U. ( V " ( h  u. 
{ a } ) )  e.  _V )
34 id 22 . . . . . . . . 9  |-  ( z  =  U. ( V
" ( h  u. 
{ a } ) )  ->  z  =  U. ( V " (
h  u.  { a } ) ) )
35 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  h  =  ( 2nd `  ( 1st `  s ) ) )
369fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 2nd `  ( 1st `  s
) )  =  ( 2nd `  ( 1st `  <. D ,  H ,  A >. ) ) )
37 ot2ndg 7183 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  _V  /\  H  e.  Fin  /\  A  e.  (mEx `  T )
)  ->  ( 2nd `  ( 1st `  <. D ,  H ,  A >. ) )  =  H )
3819, 22, 24, 37syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 2nd `  ( 1st `  <. D ,  H ,  A >. ) )  =  H )
3935, 36, 383eqtrd 2660 . . . . . . . . . . . . 13  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  h  =  H )
40 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  a  =  ( 2nd `  s
) )
418fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 2nd `  s )  =  ( 2nd `  <. D ,  H ,  A >. ) )
42 ot3rdg 7184 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (mEx `  T
)  ->  ( 2nd ` 
<. D ,  H ,  A >. )  =  A )
4324, 42syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( 2nd `  <. D ,  H ,  A >. )  =  A )
4440, 41, 433eqtrd 2660 . . . . . . . . . . . . . 14  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  a  =  A )
4544sneqd 4189 . . . . . . . . . . . . 13  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  { a }  =  { A } )
4639, 45uneq12d 3768 . . . . . . . . . . . 12  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  (
h  u.  { a } )  =  ( H  u.  { A } ) )
4746imaeq2d 5466 . . . . . . . . . . 11  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  ( V " ( h  u. 
{ a } ) )  =  ( V
" ( H  u.  { A } ) ) )
4847unieqd 4446 . . . . . . . . . 10  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  U. ( V " ( h  u. 
{ a } ) )  =  U. ( V " ( H  u.  { A } ) ) )
49 msrval.z . . . . . . . . . 10  |-  Z  = 
U. ( V "
( H  u.  { A } ) )
5048, 49syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  U. ( V " ( h  u. 
{ a } ) )  =  Z )
5134, 50sylan9eqr 2678 . . . . . . . 8  |-  ( ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  =  <. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s ) )  /\  z  = 
U. ( V "
( h  u.  {
a } ) ) )  ->  z  =  Z )
5251sqxpeqd 5141 . . . . . . 7  |-  ( ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  =  <. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s ) )  /\  z  = 
U. ( V "
( h  u.  {
a } ) ) )  ->  ( z  X.  z )  =  ( Z  X.  Z ) )
5333, 52csbied 3560 . . . . . 6  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
)  =  ( Z  X.  Z ) )
5427, 53ineq12d 3815 . . . . 5  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  (
( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) )  =  ( D  i^i  ( Z  X.  Z ) ) )
5554, 39, 44oteq123d 4417 . . . 4  |-  ( ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  = 
<. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  /\  a  =  ( 2nd `  s
) )  ->  <. (
( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >.  =  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. )
567, 55csbied 3560 . . 3  |-  ( ( ( <. D ,  H ,  A >.  e.  P  /\  s  =  <. D ,  H ,  A >. )  /\  h  =  ( 2nd `  ( 1st `  s ) ) )  ->  [_ ( 2nd `  s )  /  a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >.  =  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. )
576, 56csbied 3560 . 2  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  s  =  <. D ,  H ,  A >. )  ->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >.  =  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. )
58 id 22 . 2  |-  ( <. D ,  H ,  A >.  e.  P  ->  <. D ,  H ,  A >.  e.  P )
59 otex 4933 . . 3  |-  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >.  e. 
_V
6059a1i 11 . 2  |-  ( <. D ,  H ,  A >.  e.  P  ->  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >.  e.  _V )
615, 57, 58, 60fvmptd 6288 1  |-  ( <. D ,  H ,  A >.  e.  P  -> 
( R `  <. D ,  H ,  A >. )  =  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   <.cotp 4185   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   Fincfn 7955  mExcmex 31364  mDVcmdv 31365  mVarscmvrs 31366  mPreStcmpst 31370  mStRedcmsr 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-mpst 31390  df-msr 31391
This theorem is referenced by:  msrf  31439  msrid  31442  elmsta  31445  mthmpps  31479
  Copyright terms: Public domain W3C validator