MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsr Structured version   Visualization version   GIF version

Theorem mulcnsr 9957
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)

Proof of Theorem mulcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . 2 ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ V
2 oveq1 6657 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑢) = (𝐴 ·R 𝑢))
3 oveq1 6657 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ·R 𝑓) = (𝐵 ·R 𝑓))
43oveq2d 6666 . . . . 5 (𝑣 = 𝐵 → (-1R ·R (𝑣 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝑓)))
52, 4oveqan12d 6669 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))) = ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))))
6 oveq1 6657 . . . . 5 (𝑣 = 𝐵 → (𝑣 ·R 𝑢) = (𝐵 ·R 𝑢))
7 oveq1 6657 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑓) = (𝐴 ·R 𝑓))
86, 7oveqan12rd 6670 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓)) = ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)))
95, 8opeq12d 4410 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩)
10 oveq2 6658 . . . . 5 (𝑢 = 𝐶 → (𝐴 ·R 𝑢) = (𝐴 ·R 𝐶))
11 oveq2 6658 . . . . . 6 (𝑓 = 𝐷 → (𝐵 ·R 𝑓) = (𝐵 ·R 𝐷))
1211oveq2d 6666 . . . . 5 (𝑓 = 𝐷 → (-1R ·R (𝐵 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝐷)))
1310, 12oveqan12d 6669 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))) = ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))))
14 oveq2 6658 . . . . 5 (𝑢 = 𝐶 → (𝐵 ·R 𝑢) = (𝐵 ·R 𝐶))
15 oveq2 6658 . . . . 5 (𝑓 = 𝐷 → (𝐴 ·R 𝑓) = (𝐴 ·R 𝐷))
1614, 15oveqan12d 6669 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)) = ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)))
1713, 16opeq12d 4410 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
189, 17sylan9eq 2676 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
19 df-mul 9948 . . 3 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
20 df-c 9942 . . . . . . 7 ℂ = (R × R)
2120eleq2i 2693 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
2220eleq2i 2693 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
2321, 22anbi12i 733 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
2423anbi1i 731 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
2524oprabbii 6710 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
2619, 25eqtri 2644 . 2 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
271, 18, 26ov3 6797 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  cop 4183   × cxp 5112  (class class class)co 6650  {coprab 6651  Rcnr 9687  -1Rcm1r 9690   +R cplr 9691   ·R cmr 9692  cc 9934   · cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-c 9942  df-mul 9948
This theorem is referenced by:  mulresr  9960  mulcnsrec  9965  axmulf  9967  axi2m1  9980  axcnre  9985
  Copyright terms: Public domain W3C validator