![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulresr | Structured version Visualization version GIF version |
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 9901 | . . 3 ⊢ 0R ∈ R | |
2 | mulcnsr 9957 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) | |
3 | 2 | an4s 869 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
4 | 1, 1, 3 | mpanr12 721 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
5 | 00sr 9920 | . . . . . . . 8 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0R ·R 0R) = 0R |
7 | 6 | oveq2i 6661 | . . . . . 6 ⊢ (-1R ·R (0R ·R 0R)) = (-1R ·R 0R) |
8 | m1r 9903 | . . . . . . 7 ⊢ -1R ∈ R | |
9 | 00sr 9920 | . . . . . . 7 ⊢ (-1R ∈ R → (-1R ·R 0R) = 0R) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (-1R ·R 0R) = 0R |
11 | 7, 10 | eqtri 2644 | . . . . 5 ⊢ (-1R ·R (0R ·R 0R)) = 0R |
12 | 11 | oveq2i 6661 | . . . 4 ⊢ ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R) |
13 | mulclsr 9905 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | |
14 | 0idsr 9918 | . . . . 5 ⊢ ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) |
16 | 12, 15 | syl5eq 2668 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵)) |
17 | mulcomsr 9910 | . . . . . 6 ⊢ (0R ·R 𝐵) = (𝐵 ·R 0R) | |
18 | 00sr 9920 | . . . . . 6 ⊢ (𝐵 ∈ R → (𝐵 ·R 0R) = 0R) | |
19 | 17, 18 | syl5eq 2668 | . . . . 5 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = 0R) |
20 | 00sr 9920 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
21 | 19, 20 | oveqan12rd 6670 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R)) |
22 | 0idsr 9918 | . . . . 5 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
23 | 1, 22 | ax-mp 5 | . . . 4 ⊢ (0R +R 0R) = 0R |
24 | 21, 23 | syl6eq 2672 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R) |
25 | 16, 24 | opeq12d 4410 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉 = 〈(𝐴 ·R 𝐵), 0R〉) |
26 | 4, 25 | eqtrd 2656 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 (class class class)co 6650 Rcnr 9687 0Rc0r 9688 -1Rcm1r 9690 +R cplr 9691 ·R cmr 9692 · cmul 9941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-1p 9804 df-plp 9805 df-mp 9806 df-ltp 9807 df-enr 9877 df-nr 9878 df-plr 9879 df-mr 9880 df-0r 9882 df-m1r 9884 df-c 9942 df-mul 9948 |
This theorem is referenced by: axmulrcl 9975 ax1rid 9982 axrrecex 9984 axpre-mulgt0 9989 |
Copyright terms: Public domain | W3C validator |