![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muval | Structured version Visualization version GIF version |
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
muval | ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4657 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴)) | |
2 | 1 | rexbidv 3052 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
3 | breq2 4657 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
4 | 3 | rabbidv 3189 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
5 | 4 | fveq2d 6195 | . . . 4 ⊢ (𝑥 = 𝐴 → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) = (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
6 | 5 | oveq2d 6666 | . . 3 ⊢ (𝑥 = 𝐴 → (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
7 | 2, 6 | ifbieq2d 4111 | . 2 ⊢ (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
8 | df-mu 24827 | . 2 ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | |
9 | c0ex 10034 | . . 3 ⊢ 0 ∈ V | |
10 | ovex 6678 | . . 3 ⊢ (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ∈ V | |
11 | 9, 10 | ifex 4156 | . 2 ⊢ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ∈ V |
12 | 7, 8, 11 | fvmpt 6282 | 1 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 ifcif 4086 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 -cneg 10267 ℕcn 11020 2c2 11070 ↑cexp 12860 #chash 13117 ∥ cdvds 14983 ℙcprime 15385 μcmu 24821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-i2m1 10004 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-mu 24827 |
This theorem is referenced by: muval1 24859 muval2 24860 isnsqf 24861 mule1 24874 |
Copyright terms: Public domain | W3C validator |