MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval Structured version   Visualization version   Unicode version

Theorem muval 24858
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
muval  |-  ( A  e.  NN  ->  (
mmu `  A )  =  if ( E. p  e.  Prime  ( p ^
2 )  ||  A ,  0 ,  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) )
Distinct variable group:    A, p

Proof of Theorem muval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . 4  |-  ( x  =  A  ->  (
( p ^ 2 )  ||  x  <->  ( p ^ 2 )  ||  A ) )
21rexbidv 3052 . . 3  |-  ( x  =  A  ->  ( E. p  e.  Prime  ( p ^ 2 ) 
||  x  <->  E. p  e.  Prime  ( p ^
2 )  ||  A
) )
3 breq2 4657 . . . . . 6  |-  ( x  =  A  ->  (
p  ||  x  <->  p  ||  A
) )
43rabbidv 3189 . . . . 5  |-  ( x  =  A  ->  { p  e.  Prime  |  p  ||  x }  =  {
p  e.  Prime  |  p 
||  A } )
54fveq2d 6195 . . . 4  |-  ( x  =  A  ->  ( # `
 { p  e. 
Prime  |  p  ||  x } )  =  (
# `  { p  e.  Prime  |  p  ||  A } ) )
65oveq2d 6666 . . 3  |-  ( x  =  A  ->  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  x }
) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) )
72, 6ifbieq2d 4111 . 2  |-  ( x  =  A  ->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  x ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  x } ) ) )  =  if ( E. p  e. 
Prime  ( p ^ 2 )  ||  A , 
0 ,  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) ) )
8 df-mu 24827 . 2  |-  mmu  =  ( x  e.  NN  |->  if ( E. p  e. 
Prime  ( p ^ 2 )  ||  x ,  0 ,  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  x }
) ) ) )
9 c0ex 10034 . . 3  |-  0  e.  _V
10 ovex 6678 . . 3  |-  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  e.  _V
119, 10ifex 4156 . 2  |-  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  e.  _V
127, 8, 11fvmpt 6282 1  |-  ( A  e.  NN  ->  (
mmu `  A )  =  if ( E. p  e.  Prime  ( p ^
2 )  ||  A ,  0 ,  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   -ucneg 10267   NNcn 11020   2c2 11070   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385   mmucmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mu 24827
This theorem is referenced by:  muval1  24859  muval2  24860  isnsqf  24861  mule1  24874
  Copyright terms: Public domain W3C validator