Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl2 Structured version   Visualization version   GIF version

Theorem mzpcl2 37293
Description: Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
Distinct variable groups:   𝑔,𝑉   𝑃,𝑔   𝑔,𝐹

Proof of Theorem mzpcl2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝐹𝑉)
2 simpl 473 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝑃 ∈ (mzPolyCld‘𝑉))
3 elfvex 6221 . . . . . 6 (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V)
43adantr 481 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝑉 ∈ V)
5 elmzpcl 37289 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
72, 6mpbid 222 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃))))
8 simprlr 803 . . 3 ((𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃))) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃)
97, 8syl 17 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃)
10 fveq2 6191 . . . . 5 (𝑓 = 𝐹 → (𝑔𝑓) = (𝑔𝐹))
1110mpteq2dv 4745 . . . 4 (𝑓 = 𝐹 → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) = (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝐹)))
1211eleq1d 2686 . . 3 (𝑓 = 𝐹 → ((𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃 ↔ (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃))
1312rspcva 3307 . 2 ((𝐹𝑉 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
141, 9, 13syl2anc 693 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  {csn 4177  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857   + caddc 9939   · cmul 9941  cz 11377  mzPolyCldcmzpcl 37284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mzpcl 37286
This theorem is referenced by:  mzpincl  37297  mzpproj  37300
  Copyright terms: Public domain W3C validator