Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl34 Structured version   Visualization version   GIF version

Theorem mzpcl34 37294
Description: Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl34 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹𝑓 + 𝐺) ∈ 𝑃 ∧ (𝐹𝑓 · 𝐺) ∈ 𝑃))

Proof of Theorem mzpcl34
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐹𝑃)
2 simp3 1063 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐺𝑃)
3 simp1 1061 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑃 ∈ (mzPolyCld‘𝑉))
43elfvexd 6222 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑉 ∈ V)
5 elmzpcl 37289 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
73, 6mpbid 222 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃))))
87simprrd 797 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃))
9 oveq1 6657 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑓 + 𝑔) = (𝐹𝑓 + 𝑔))
109eleq1d 2686 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑓 + 𝑔) ∈ 𝑃 ↔ (𝐹𝑓 + 𝑔) ∈ 𝑃))
11 oveq1 6657 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑓 · 𝑔) = (𝐹𝑓 · 𝑔))
1211eleq1d 2686 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑓 · 𝑔) ∈ 𝑃 ↔ (𝐹𝑓 · 𝑔) ∈ 𝑃))
1310, 12anbi12d 747 . . 3 (𝑓 = 𝐹 → (((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃) ↔ ((𝐹𝑓 + 𝑔) ∈ 𝑃 ∧ (𝐹𝑓 · 𝑔) ∈ 𝑃)))
14 oveq2 6658 . . . . 5 (𝑔 = 𝐺 → (𝐹𝑓 + 𝑔) = (𝐹𝑓 + 𝐺))
1514eleq1d 2686 . . . 4 (𝑔 = 𝐺 → ((𝐹𝑓 + 𝑔) ∈ 𝑃 ↔ (𝐹𝑓 + 𝐺) ∈ 𝑃))
16 oveq2 6658 . . . . 5 (𝑔 = 𝐺 → (𝐹𝑓 · 𝑔) = (𝐹𝑓 · 𝐺))
1716eleq1d 2686 . . . 4 (𝑔 = 𝐺 → ((𝐹𝑓 · 𝑔) ∈ 𝑃 ↔ (𝐹𝑓 · 𝐺) ∈ 𝑃))
1815, 17anbi12d 747 . . 3 (𝑔 = 𝐺 → (((𝐹𝑓 + 𝑔) ∈ 𝑃 ∧ (𝐹𝑓 · 𝑔) ∈ 𝑃) ↔ ((𝐹𝑓 + 𝐺) ∈ 𝑃 ∧ (𝐹𝑓 · 𝐺) ∈ 𝑃)))
1913, 18rspc2va 3323 . 2 (((𝐹𝑃𝐺𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)) → ((𝐹𝑓 + 𝐺) ∈ 𝑃 ∧ (𝐹𝑓 · 𝐺) ∈ 𝑃))
201, 2, 8, 19syl21anc 1325 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹𝑓 + 𝐺) ∈ 𝑃 ∧ (𝐹𝑓 · 𝐺) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  {csn 4177  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857   + caddc 9939   · cmul 9941  cz 11377  mzPolyCldcmzpcl 37284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mzpcl 37286
This theorem is referenced by:  mzpincl  37297  mzpadd  37301  mzpmul  37302
  Copyright terms: Public domain W3C validator