| Step | Hyp | Ref
| Expression |
| 1 | | nbgrcl 26233 |
. . . . 5
⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺)) |
| 2 | | nbgrel.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | 1, 2 | syl6eleqr 2712 |
. . . 4
⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑁) → 𝑁 ∈ 𝑉) |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝐺 ∈ 𝑊 → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) → 𝑁 ∈ 𝑉)) |
| 5 | 4 | pm4.71rd 667 |
. 2
⊢ (𝐺 ∈ 𝑊 → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ (𝑁 ∈ 𝑉 ∧ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 6 | | nbgrel.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 7 | 2, 6 | nbgrval 26234 |
. . . . . . 7
⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑘 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑘} ⊆ 𝑒}) |
| 8 | 7 | eleq2d 2687 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝐾 ∈ {𝑘 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑘} ⊆ 𝑒})) |
| 9 | | preq2 4269 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → {𝑁, 𝑘} = {𝑁, 𝐾}) |
| 10 | 9 | sseq1d 3632 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ({𝑁, 𝑘} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒)) |
| 11 | 10 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑘} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)) |
| 12 | 11 | elrab 3363 |
. . . . . . 7
⊢ (𝐾 ∈ {𝑘 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑘} ⊆ 𝑒} ↔ (𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)) |
| 13 | | eldifsn 4317 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑉 ∖ {𝑁}) ↔ (𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁)) |
| 14 | 13 | anbi1i 731 |
. . . . . . 7
⊢ ((𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒) ↔ ((𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁) ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)) |
| 15 | | anass 681 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁) ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒) ↔ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) |
| 16 | 12, 14, 15 | 3bitri 286 |
. . . . . 6
⊢ (𝐾 ∈ {𝑘 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑘} ⊆ 𝑒} ↔ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) |
| 17 | 8, 16 | syl6bb 276 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)))) |
| 18 | 17 | adantl 482 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)))) |
| 19 | 18 | pm5.32da 673 |
. . 3
⊢ (𝐺 ∈ 𝑊 → ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) ↔ (𝑁 ∈ 𝑉 ∧ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))))) |
| 20 | | 3anass 1042 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒) ↔ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) |
| 21 | | ancom 466 |
. . . . 5
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ (𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉)) |
| 22 | 21 | anbi1i 731 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)) ↔ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) |
| 23 | | anass 681 |
. . . 4
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)) ↔ (𝑁 ∈ 𝑉 ∧ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)))) |
| 24 | 20, 22, 23 | 3bitrri 287 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ (𝐾 ∈ 𝑉 ∧ (𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) ↔ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒)) |
| 25 | 19, 24 | syl6bb 276 |
. 2
⊢ (𝐺 ∈ 𝑊 → ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) ↔ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) |
| 26 | 5, 25 | bitrd 268 |
1
⊢ (𝐺 ∈ 𝑊 → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝐾} ⊆ 𝑒))) |