MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj Structured version   Visualization version   GIF version

Theorem neindisj 20921
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)

Proof of Theorem neindisj
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . . 8 𝑋 = 𝐽
21clsss3 20863 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
32sseld 3602 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
43impr 649 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → 𝑃𝑋)
51isneip 20909 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
64, 5syldan 487 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
7 3anass 1042 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))))
81clsndisj 20879 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
97, 8sylanbr 490 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
109anassrs 680 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1110adantllr 755 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1211adantrr 753 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑔𝑆) ≠ ∅)
13 ssdisj 4026 . . . . . . . . . . 11 ((𝑔𝑁 ∧ (𝑁𝑆) = ∅) → (𝑔𝑆) = ∅)
1413ex 450 . . . . . . . . . 10 (𝑔𝑁 → ((𝑁𝑆) = ∅ → (𝑔𝑆) = ∅))
1514necon3d 2815 . . . . . . . . 9 (𝑔𝑁 → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1615ad2antll 765 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1712, 16mpd 15 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅)
1817ex 450 . . . . . 6 ((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) → ((𝑃𝑔𝑔𝑁) → (𝑁𝑆) ≠ ∅))
1918rexlimdva 3031 . . . . 5 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) → (𝑁𝑆) ≠ ∅))
2019expimpd 629 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅))
216, 20sylbid 230 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))
2221exp32 631 . 2 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))))
2322imp43 621 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436  cfv 5888  Topctop 20698  clsccl 20822  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902
This theorem is referenced by:  clslp  20952  flimclslem  21788  utop3cls  22055
  Copyright terms: Public domain W3C validator