MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isneip Structured version   Visualization version   GIF version

Theorem isneip 20909
Description: The predicate "𝑁 is a neighborhood of point 𝑃." (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isneip ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑃,𝑔   𝑔,𝑋

Proof of Theorem isneip
StepHypRef Expression
1 snssi 4339 . . 3 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
2 neifval.1 . . . 4 𝑋 = 𝐽
32isnei 20907 . . 3 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
41, 3sylan2 491 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
5 snssg 4327 . . . . . 6 (𝑃𝑋 → (𝑃𝑔 ↔ {𝑃} ⊆ 𝑔))
65anbi1d 741 . . . . 5 (𝑃𝑋 → ((𝑃𝑔𝑔𝑁) ↔ ({𝑃} ⊆ 𝑔𝑔𝑁)))
76rexbidv 3052 . . . 4 (𝑃𝑋 → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) ↔ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁)))
87anbi2d 740 . . 3 (𝑃𝑋 → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
98adantl 482 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
104, 9bitr4d 271 1 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574  {csn 4177   cuni 4436  cfv 5888  Topctop 20698  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-nei 20902
This theorem is referenced by:  neips  20917  neindisj  20921  neindisj2  20927  neiptopnei  20936  cnpnei  21068  fbflim2  21781  cnpflf2  21804  neibl  22306  neibastop2  32356  neibastop3  32357
  Copyright terms: Public domain W3C validator