MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Structured version   Visualization version   GIF version

Theorem clsndisj 20879
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsndisj (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem clsndisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
2 simp2 1062 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
3 clscld.1 . . . . . 6 𝑋 = 𝐽
43clsss3 20863 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
54sseld 3602 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
653impia 1261 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃𝑋)
7 simp3 1063 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))
83elcls 20877 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
98biimpa 501 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
101, 2, 6, 7, 9syl31anc 1329 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
11 eleq2 2690 . . . . 5 (𝑥 = 𝑈 → (𝑃𝑥𝑃𝑈))
12 ineq1 3807 . . . . . 6 (𝑥 = 𝑈 → (𝑥𝑆) = (𝑈𝑆))
1312neeq1d 2853 . . . . 5 (𝑥 = 𝑈 → ((𝑥𝑆) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1411, 13imbi12d 334 . . . 4 (𝑥 = 𝑈 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1514rspccv 3306 . . 3 (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑈𝐽 → (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1615imp32 449 . 2 ((∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
1710, 16sylan 488 1 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cin 3573  wss 3574  c0 3915   cuni 4436  cfv 5888  Topctop 20698  clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  neindisj  20921  clsconn  21233  txcls  21407  ptclsg  21418  flimsncls  21790  hauspwpwf1  21791  met2ndci  22327  metdseq0  22657  heibor1lem  33608
  Copyright terms: Public domain W3C validator